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Inertial range in developed turbulence

Fully developed turbulence: at large Reynolds numbers

Re =
UL

ν
≫ Re cr

scale invariance of moments of velocity in the inertial range.
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Inertial range in developed turbulence

Fully developed turbulence: at large Reynolds numbers

Re =
UL

ν
≫ Re cr

scale invariance of moments of velocity in the inertial range.

Cascade picture: energy transfer by turbulent eddies from
the integral scale L to the dissipation scale η.

energy injection cascade transfer energy dissipation
at mean rate ε

L = 1
m m ≪ k ≪ Λ η = 1

Λ

energy range inertial range dissipation range

Renormalization group in stochastic theory of developed turbulence 1 – p. 3/12



Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .

Kolmogorov constant CK and 4
5 (at d = 3) law

S2(r) ∼ CK(ε r)2/3 , S3(r) ∼ −
12

d(d + 2)
ε r .
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .

Kolmogorov constant CK and 4
5 (at d = 3) law

S2(r) ∼ CK(ε r)2/3 , S3(r) ∼ −
12

d(d + 2)
ε r .

Anomalous scaling: exponents of Sn nonlinear in n.
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Stochastic hydrodynamics

Fluctuating velocity generated by randomly forced
Navier-Stokes equation for incompressible fluid (∇ · v = 0)

∂tv + v · ∇v = ν0∇
2v −

∇p

ρ
+ f .
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Stochastic hydrodynamics

Fluctuating velocity generated by randomly forced
Navier-Stokes equation for incompressible fluid (∇ · v = 0)

∂tv + v · ∇v = ν0∇
2v −

∇p

ρ
+ f .

Gaussian distribution of random force f : 〈 fm(t,k) 〉 = 0 and

〈 fm(t,k)fn(t′,k′) 〉 =

(

δmn −
kmkn

k2

)

(2π)dδ(t − t′)δ(k + k′) df (k) .
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Stochastic hydrodynamics

Fluctuating velocity generated by randomly forced
Navier-Stokes equation for incompressible fluid (∇ · v = 0)

∂tv + v · ∇v = ν0∇
2v −

∇p

ρ
+ f .

Gaussian distribution of random force f : 〈 fm(t,k) 〉 = 0 and

〈 fm(t,k)fn(t′,k′) 〉 =

(

δmn −
kmkn

k2

)

(2π)dδ(t − t′)δ(k + k′) df (k) .

Force correlations yield mean energy injection rate E:

E =
(d − 1)

2(2π)d

∫

dkdf (k) .

The choice of the function df (k) fixes perturbation theory.
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Thermal fluctuations vs. random stirring

Near-equilibrium thermal fluctuations described by

df (k) = D20k
2θ(Λ − k) , D20 = 2ν0T/ρ . (model A)
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Thermal fluctuations vs. random stirring

Near-equilibrium thermal fluctuations described by

df (k) = D20k
2θ(Λ − k) , D20 = 2ν0T/ρ . (model A)

Momentum-shell RG by Forster, Nelson & Stephen (1976).
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Thermal fluctuations vs. random stirring

Near-equilibrium thermal fluctuations described by

df (k) = D20k
2θ(Λ − k) , D20 = 2ν0T/ρ . (model A)

Momentum-shell RG by Forster, Nelson & Stephen (1976).

Macroscopic "shaking" due to finite df (0)

df (k) = D20θ(Λ − k) . (model B)
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Thermal fluctuations vs. random stirring

Near-equilibrium thermal fluctuations described by

df (k) = D20k
2θ(Λ − k) , D20 = 2ν0T/ρ . (model A)

Momentum-shell RG by Forster, Nelson & Stephen (1976).

Macroscopic "shaking" due to finite df (0)

df (k) = D20θ(Λ − k) . (model B)

Agitation in a finite band of scales m < k < Λ

df (k) = k2D20 [θ(Λ − k) − θ(m − k)] . (model C)
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Thermal fluctuations vs. random stirring

Near-equilibrium thermal fluctuations described by

df (k) = D20k
2θ(Λ − k) , D20 = 2ν0T/ρ . (model A)

Momentum-shell RG by Forster, Nelson & Stephen (1976).

Macroscopic "shaking" due to finite df (0)

df (k) = D20θ(Λ − k) . (model B)

Agitation in a finite band of scales m < k < Λ

df (k) = k2D20 [θ(Λ − k) − θ(m − k)] . (model C)

Calculations with cutoff tough. Without cutoff – UV injection.
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Long-range correlated random force

Technically a more flexible choice is (ε is a new parameter)

df (k) = D10 k4−d−2ε h(m/k) , mL ∼ 1 , h(0) = 1.
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Long-range correlated random force

Technically a more flexible choice is (ε is a new parameter)

df (k) = D10 k4−d−2ε h(m/k) , mL ∼ 1 , h(0) = 1.

De Dominicis & Martin (1979) used h(x) = (x + 1)−2ε.
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Long-range correlated random force

Technically a more flexible choice is (ε is a new parameter)

df (k) = D10 k4−d−2ε h(m/k) , mL ∼ 1 , h(0) = 1.

De Dominicis & Martin (1979) used h(x) = (x + 1)−2ε.

If IR cutoff not needed, then put h = 1 for a δ sequence:

δ(k) = S−1
d k−d lim

ε→2

[

(4 − 2ε)(k/Λ)4−2ε
]

, Sd ≡ 2πd/2/Γ(d/2) .
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Long-range correlated random force

Technically a more flexible choice is (ε is a new parameter)

df (k) = D10 k4−d−2ε h(m/k) , mL ∼ 1 , h(0) = 1.

De Dominicis & Martin (1979) used h(x) = (x + 1)−2ε.

If IR cutoff not needed, then put h = 1 for a δ sequence:

δ(k) = S−1
d k−d lim

ε→2

[

(4 − 2ε)(k/Λ)4−2ε
]

, Sd ≡ 2πd/2/Γ(d/2) .

With a suitable choice of D10 the physical value ε → 2

corresponds to idealized injection by infinitely large eddies:

df (k) = 2(2π)d E δ(k)/(d − 1) .
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Field-theoretic (MSR) representation

Cast the Navier-Stokes problem into the field-theoretic form:
De Dominicis-Janssen (or Martin-Siggia-Rose) action

SNS(v,v′) =
1

2
v′Dv′ − v′

[

∂tv + (v∇)v − ν0∇
2v

]

,
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Field-theoretic (MSR) representation

Cast the Navier-Stokes problem into the field-theoretic form:
De Dominicis-Janssen (or Martin-Siggia-Rose) action

SNS(v,v′) =
1

2
v′Dv′ − v′

[

∂tv + (v∇)v − ν0∇
2v

]

,

where integrals and sums implied and (Pmn = δnm − knkm/k2)

Dmn(t,x + r, t′,x) = δ(t − t′)

∫

dr exp [i(k · r)]Pmn df (k) .
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Field-theoretic (MSR) representation

Cast the Navier-Stokes problem into the field-theoretic form:
De Dominicis-Janssen (or Martin-Siggia-Rose) action

SNS(v,v′) =
1

2
v′Dv′ − v′

[

∂tv + (v∇)v − ν0∇
2v

]

,

where integrals and sums implied and (Pmn = δnm − knkm/k2)

Dmn(t,x + r, t′,x) = δ(t − t′)

∫

dr exp [i(k · r)]Pmn df (k) .

The MSR action generates perturbation expansion, e.g.
through the integral representation of correlation functions

Gn(1, . . . , n) = 〈v(1) . . . v(n)〉 =

∫

Dv

∫

Dv′v(1) . . . v(n) eSNS(v,v′)
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Feynman rules for perturbation theory

Quadratic part of the MSR action gives rise to the bare
propagator and correlation function depicted by lines

〈vm(ω,k)v′n(−ω,−k)〉0 =
Pmn

−iω + ν0k2
⇐⇒ ,

〈vm(ω,k)vn(−ω,−k)〉0 =
df (k)Pmn

ω2 + ν2
0k4

⇐⇒ ,

〈v′m(ω,k)v′n(−ω,−k)〉0 = 0 .
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Feynman rules for perturbation theory

Quadratic part of the MSR action gives rise to the bare
propagator and correlation function depicted by lines

〈vm(ω,k)v′n(−ω,−k)〉0 =
Pmn

−iω + ν0k2
⇐⇒ ,

〈vm(ω,k)vn(−ω,−k)〉0 =
df (k)Pmn

ω2 + ν2
0k4

⇐⇒ ,

〈v′m(ω,k)v′n(−ω,−k)〉0 = 0 .

The interaction term −v′(v∇)v = ϕ′
iVijsϕjϕs/2 gives rise to the

vertex factor (k is the wave-vector argument of the field v′)

Vijs(k) = i(kjδis + ksδij) ⇐⇒ .
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Feynman rules for perturbation theory

Quadratic part of the MSR action gives rise to the bare
propagator and correlation function depicted by lines

〈vm(ω,k)v′n(−ω,−k)〉0 =
Pmn

−iω + ν0k2
⇐⇒ ,

〈vm(ω,k)vn(−ω,−k)〉0 =
df (k)Pmn

ω2 + ν2
0k4

⇐⇒ ,

〈v′m(ω,k)v′n(−ω,−k)〉0 = 0 .

The interaction term −v′(v∇)v = ϕ′
iVijsϕjϕs/2 gives rise to the

vertex factor (k is the wave-vector argument of the field v′)

Vijs(k) = i(kjδis + ksδij) ⇐⇒ .

The effective expansion parameter is g10 ≡ D10/ν
3
0 .

Renormalization group in stochastic theory of developed turbulence 1 – p. 9/12



Graphs for pair correlation function

One-loop graphs for the velocity-velocity correlation function:
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Graphs for pair correlation function

One-loop graphs for the velocity-velocity correlation function:

The second graph, e.g., corresponds to (q = p − k)

R2 =
Pml(p)

−iω + ν0p2

∫

dk

(2π)d

∫

dΩ

2π
Vlij(p)

Pii′(q)

−i (ω − Ω) + ν0q2

×
df (k)Pjj′(k)

ω2 + ν2
0k4

Vi′j′l′(q)
df (p)Pl′n(p)

ω2 + ν2
0p4

.
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Graphs for pair correlation function

One-loop graphs for the velocity-velocity correlation function:

The second graph, e.g., corresponds to (q = p − k)

R2 =
Pml(p)

−iω + ν0p2

∫

dk

(2π)d

∫

dΩ

2π
Vlij(p)

Pii′(q)

−i (ω − Ω) + ν0q2

×
df (k)Pjj′(k)

ω2 + ν2
0k4

Vi′j′l′(q)
df (p)Pl′n(p)

ω2 + ν2
0p4

.

For the powerlike force correlation df (k) = D10 k4−d−2ε the
integral UV converges at ε > 0, diverges at ε ≤ 0 (∀d).
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UV regularization by the falloff exponent

The falloff exponent ε acts as the parameter of the usual
dimensional regularization giving rise to poles in ε.
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UV regularization by the falloff exponent

The falloff exponent ε acts as the parameter of the usual
dimensional regularization giving rise to poles in ε.

The one-loop divergences are generated by the graph
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UV regularization by the falloff exponent

The falloff exponent ε acts as the parameter of the usual
dimensional regularization giving rise to poles in ε.

The one-loop divergences are generated by the graph

Frequency integration in the limit p → 0 gives (z ≡ (p · k)/pk)

TrΓ(1)(ω,p)

ν0p2(d − 1)

∣

∣

∣

∣

ω=0

p=0

=

−
g0

4(d − 1)(2π)d

∫

dk

kd+2ε
h(m/k)

[

d − 3 + (9 − d)z2 − 6z4
]

.
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UV divergences as poles inε

Consider the sharp IR cutoff h(m/k) = θ(k/m − 1).
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UV divergences as poles inε

Consider the sharp IR cutoff h(m/k) = θ(k/m − 1).

Γ(1) is independent of the wave-vector direction: it may be
calculated as the angular average using relations

〈z2n〉Ω =
Γ(d/2)

2πd/2

∫

dΩ cos2nθ =
(2n − 1)!!

d(d + 2) . . . (d + 2n − 2)
, 〈z2n+1〉Ω = 0.
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UV divergences as poles inε

Consider the sharp IR cutoff h(m/k) = θ(k/m − 1).

Γ(1) is independent of the wave-vector direction: it may be
calculated as the angular average using relations

〈z2n〉Ω =
Γ(d/2)

2πd/2

∫

dΩ cos2nθ =
(2n − 1)!!

d(d + 2) . . . (d + 2n − 2)
, 〈z2n+1〉Ω = 0.

This gives (S̄d = 2πd/2/(2π)dΓ(d/2), g10 ≡ D10/ν
3
0)

Γ(1) = −
g0 S̄d (d − 1)

4(d + 2)

∫ ∞

m

dk

k1+2ε
= −

(d − 1)(m)−2ε g0S̄d

8(d + 2) ε
.

Renormalization group in stochastic theory of developed turbulence 1 – p. 12/12



UV divergences as poles inε

Consider the sharp IR cutoff h(m/k) = θ(k/m − 1).

Γ(1) is independent of the wave-vector direction: it may be
calculated as the angular average using relations

〈z2n〉Ω =
Γ(d/2)

2πd/2

∫

dΩ cos2nθ =
(2n − 1)!!

d(d + 2) . . . (d + 2n − 2)
, 〈z2n+1〉Ω = 0.

This gives (S̄d = 2πd/2/(2π)dΓ(d/2), g10 ≡ D10/ν
3
0)

Γ(1) = −
g0 S̄d (d − 1)

4(d + 2)

∫ ∞

m

dk

k1+2ε
= −

(d − 1)(m)−2ε g0S̄d

8(d + 2) ε
.

The pole explicit pole in ε will be absorbed in the UV
renormalization of the 1PI response function with this graph.
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