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Canonical dimensions of fields and parameters

Both UV and IR divergences occur in field theories.

In particle physics, the UV divergences must be eliminated,
in hydrodynamics it is useful to extract IR asymptotics.

IR and UV connected in logarithmic models with
dimensionless couplings. Introduce canonical dimensions.

Separate spatial and temporal dimensions convenient.
Conventions: dk

k = −dk
x = 1, dω

ω = −dω
t = 1, dω

k = −dk
ω = 0.

Total dimension of a quantity Q from the homogeneity of the
free-field action under scaling k → λk, ω → λω; here:

dQ = dk
Q + 2dω

Q .
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Canonical dimensions in hydrodynamics

In stochastic hydrodynamics dimensions of fields from the
dimensionless substantial derivative: v

′ [∂tv + (v∇)v].
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Canonical dimensions in hydrodynamics

In stochastic hydrodynamics dimensions of fields from the
dimensionless substantial derivative: v
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dk
v = −1 , dω

v = 1 , dv = 1 ;

dk
v′ = d + 1 , dω

v′ = −1 , dv′ = d − 1 .
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Canonical dimensions in hydrodynamics

In stochastic hydrodynamics dimensions of fields from the
dimensionless substantial derivative: v

′ [∂tv + (v∇)v].

dk
v = −1 , dω

v = 1 , dv = 1 ;

dk
v′ = d + 1 , dω

v′ = −1 , dv′ = d − 1 .

Dimensions of the viscosity and coupling constant for
df (k) = g10ν

3
0 k4−d−2ε (don’t forget the Fourier transform!):

dk
ν0

= −2 , dω
ν0

= 1 , dν0
= 0 ;

dk
g0

= 2ε , dω
g0

= 0 , dg0
= 2ε .
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Canonical dimensions in hydrodynamics

In stochastic hydrodynamics dimensions of fields from the
dimensionless substantial derivative: v

′ [∂tv + (v∇)v].

dk
v = −1 , dω

v = 1 , dv = 1 ;

dk
v′ = d + 1 , dω

v′ = −1 , dv′ = d − 1 .

Dimensions of the viscosity and coupling constant for
df (k) = g10ν

3
0 k4−d−2ε (don’t forget the Fourier transform!):

dk
ν0

= −2 , dω
ν0

= 1 , dν0
= 0 ;

dk
g0

= 2ε , dω
g0

= 0 , dg0
= 2ε .

The theory is logarithmic at ε = 0 in any space dimension d.
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One-irreducible correlation functions

Only one graph for the one-irreducible function 〈vv′〉1−ir
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One-irreducible correlation functions

Only one graph for the one-irreducible function 〈vv′〉1−ir

There are, however, 8 graphs in the two-loop approximation
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Power counting for one-irreducible functions

UV divergences in the one-irreducible graphs Γ. Let dg0
= 0.
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Power counting for one-irreducible functions

UV divergences in the one-irreducible graphs Γ. Let dg0
= 0.

The degree of divergence of a graph Γ is its dimension dΓ

minus the number of factorizing vertex wave vectors:

δΓ
vN v′

N′
= d + 2 − V dg0

− Ndv − N ′dv′ − N ′ .
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Power counting for one-irreducible functions

UV divergences in the one-irreducible graphs Γ. Let dg0
= 0.

The degree of divergence of a graph Γ is its dimension dΓ

minus the number of factorizing vertex wave vectors:

δΓ
vN v′

N′
= d + 2 − V dg0

− Ndv − N ′dv′ − N ′ .

Graphs with N ′ = 0 and N ′ = 1, N = 0 vanish: δ ≥ 0 for the
one-irreducible correlation functions 〈vv′〉1−ir, 〈vvv′〉1−ir:

δ〈vv′〉1−ir
= 1 , δ〈vvv′〉1−ir

= 0 , δ〈v′v′〉1−ir
= 2 − d .
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Power counting for one-irreducible functions

UV divergences in the one-irreducible graphs Γ. Let dg0
= 0.

The degree of divergence of a graph Γ is its dimension dΓ

minus the number of factorizing vertex wave vectors:

δΓ
vN v′

N′
= d + 2 − V dg0

− Ndv − N ′dv′ − N ′ .

Graphs with N ′ = 0 and N ′ = 1, N = 0 vanish: δ ≥ 0 for the
one-irreducible correlation functions 〈vv′〉1−ir, 〈vvv′〉1−ir:

δ〈vv′〉1−ir
= 1 , δ〈vvv′〉1−ir

= 0 , δ〈v′v′〉1−ir
= 2 − d .

The UV-divergent part of a graph is subtracted to produce a
UV-finite renormalized function and a counterterm.
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Renormalization and counterterms

The divergent portion of a graph is independent of wave
numbers: subtraction effected by a local counterterm with
the field composition of the one-irreducible function.
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problem contain at least one factorized ∇, so there are no
counterterms of structure v′∂tv.
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Renormalization and counterterms

The divergent portion of a graph is independent of wave
numbers: subtraction effected by a local counterterm with
the field composition of the one-irreducible function.

Counterterms produced by the graphs of the Navier-Stokes
problem contain at least one factorized ∇, so there are no
counterterms of structure v′∂tv.

Galilei invariance preserves the covariant derivative
∂tv + (v∇)v: counterterm v′(v∇)v is not generated either.

The only generic counterterm is v′∇2v (for d > 2).

Separate analysis for d = 2, let d > 2 for the time being.
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Renormalized correlation functions

A model with a finite number of one-irreducible correlation
functions with δ ≥ 0 is renormalizable.
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Renormalized correlation functions

A model with a finite number of one-irreducible correlation
functions with δ ≥ 0 is renormalizable.

Basic statement of renormalization theory: UV divergences
of a renormalizable model may be absorbed in a redifinition
of parameters such that the renormalized action

SNS(v,v′) =
1

2
v
′Dv

′ − v
′
[

∂tv + (v∇)v − νZν∇
2
v
]

generates UV finite correlation functions such that
∫

DvDv′v(1) . . . v(n) eSNS0(v,v′) =

∫

DvDv′v(1) . . . v(n) eSNS(v,v′) .
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Renormalized correlation functions

A model with a finite number of one-irreducible correlation
functions with δ ≥ 0 is renormalizable.

Basic statement of renormalization theory: UV divergences
of a renormalizable model may be absorbed in a redifinition
of parameters such that the renormalized action

SNS(v,v′) =
1

2
v
′Dv

′ − v
′
[

∂tv + (v∇)v − νZν∇
2
v
]

generates UV finite correlation functions such that
∫

DvDv′v(1) . . . v(n) eSNS0(v,v′) =

∫

DvDv′v(1) . . . v(n) eSNS(v,v′) .

Most straightforwardly the renormalization constant Zν is
found just from this condition.
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .

Bare quantities independent of µ: the homogeneous RG
equation; for the pair correlation function

[µ∂µ + β1∂g1
− γνν∂ν ] G = 0 , γν = µ∂µ

∣

∣

0
ln Zν , β1 = µ∂µ

∣

∣

0
g1
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .

Bare quantities independent of µ: the homogeneous RG
equation; for the pair correlation function

[µ∂µ + β1∂g1
− γνν∂ν ] G = 0 , γν = µ∂µ

∣

∣

0
ln Zν , β1 = µ∂µ

∣

∣

0
g1

where derivatives taken with bare parameters fixed and
∫

dr exp [i(k · r)] 〈vn(t,x + r)vm(t,x)〉 = Pnm(k)G(k)
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.

Invariant (running) parameters ḡ1(µ/k, g1), ν̄(µ/k, g1): first
integrals of the RG equation, e.g.

[µ∂µ + β1∂g1
− γνν∂ν ] ḡ1 = 0 , ḡ1(1, g1) = g1 .
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.

Invariant (running) parameters ḡ1(µ/k, g1), ν̄(µ/k, g1): first
integrals of the RG equation, e.g.

[µ∂µ + β1∂g1
− γνν∂ν ] ḡ1 = 0 , ḡ1(1, g1) = g1 .

Connection between bare and invariant parameters:

g10 = ḡ1k
2εZ−3

ν

(

ḡ1,
m

k

)

, ν̄ =

(

D10k
−2ε

ḡ1

)1/3

.
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Critical dimensions at the fixed point of RG

For ε > 0 ∃ an IR-stable fixed point: ḡ1 → g1∗ ∝ ε.
Asymptotics of correlation and response functions W are
generalized homogeneous functions

W
∣

∣

IR
({λ−∆ωti}, {λ

−1
xi}) = λ

∑

Φ
∆ΦW

∣

∣

IR
({ti}, {xi}) .

Here, ∆ω and ∆Φ are critical dimensions of ω and Φ = {v, v′}.
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Critical dimensions at the fixed point of RG

For ε > 0 ∃ an IR-stable fixed point: ḡ1 → g1∗ ∝ ε.
Asymptotics of correlation and response functions W are
generalized homogeneous functions

W
∣

∣

IR
({λ−∆ωti}, {λ

−1
xi}) = λ

∑

Φ
∆ΦW

∣

∣

IR
({ti}, {xi}) .

Here, ∆ω and ∆Φ are critical dimensions of ω and Φ = {v, v′}.
They are all expressed through γ∗

ν ≡ γν(g∗):

∆v = 1 − γ∗
ν , ∆v′ = d − ∆ϕ , ∆ω = 2 − γ∗

ν .

Due to Galilei invariance, basic critical dimensions are exact:

∆v = 1 − 2ε/3 , ∆ω = 2 − 2ε/3 .
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Scaling in terms of physical variables
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Scaling in terms of physical variables

IR fixed point yields large-scale limit (k → 0, u = m/k =const)

G(k) ∼ (D10/g1∗)
2/3 k 2−d−4ε/3R(1, g1∗, u) , R(1, g1∗, u) =

∞
∑

n=1

εnRn(u) .
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Scaling in terms of physical variables

IR fixed point yields large-scale limit (k → 0, u = m/k =const)

G(k) ∼ (D10/g1∗)
2/3 k 2−d−4ε/3R(1, g1∗, u) , R(1, g1∗, u) =

∞
∑

n=1

εnRn(u) .

Translate in traditional variables; trade D10 for the mean
energy injection rate E (2 > ε > 0):

E =
(d − 1)

2(2π)d

∫

dk df (k) ⇒ D10 =
4(2 − ε) Λ2ε−4E

Sd(d − 1)
, Λ = (E/ν3

0)1/4 .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

The desired Kolmogorov scaling, when ε → 2 (IR pumping).
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

The desired Kolmogorov scaling, when ε → 2 (IR pumping).

Freezing of scaling dimensions for ε > 2 [Adzhemyan, Antonov
& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

The desired Kolmogorov scaling, when ε → 2 (IR pumping).

Freezing of scaling dimensions for ε > 2 [Adzhemyan, Antonov
& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .

Yields independence of ν0, Kolmogorov exponents ∀ ε > 2:

G(k) ∼
[

4(ε − 2)/Sd(d − 1)g1∗

]2/3
E

2/3
k−d−2/3u4(2−ε)/3R(1, g1∗, u) .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

The desired Kolmogorov scaling, when ε → 2 (IR pumping).

Freezing of scaling dimensions for ε > 2 [Adzhemyan, Antonov
& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .

Yields independence of ν0, Kolmogorov exponents ∀ ε > 2:

G(k) ∼
[

4(ε − 2)/Sd(d − 1)g1∗

]2/3
E

2/3
k−d−2/3u4(2−ε)/3R(1, g1∗, u) .

Analysis of the inertial-range limit u = m/k → 0 beyond RG.
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