Renormalization group in stochastic theory of developed turbulence 2 *Renormalization and the renormalization group*

Juha Honkonen

National Defence University, Helsinki, Finland

Outline

- Canonical dimensions of fields and parameters
- Canonical dimensions in hydrodynamics
- Canonical dimensions of Green functions
- One-irreducible correlation functions
- Power counting for one-irreducible functions
- Renormalization and counterterms
- Renormalized correlation functions
- Homogeneous renormalization-group equation
- Invariant (running) parameters
- Critical dimensions at the fixed point of RG
- Scaling in terms of physical variables

Canonical dimensions in field theory

Both UV and IR divergences occur in field theories.

Canonical dimensions in field theory

Both UV and IR divergences occur in field theories.

In particle physics, the UV divergences *must* be eliminated, in hydrodynamics it is *useful* to extract IR asymptotics.

Canonical dimensions in field theory

Both UV and IR divergences occur in field theories.

In particle physics, the UV divergences *must* be eliminated, in hydrodynamics it is *useful* to extract IR asymptotics.

IR and UV connected in *logarithmic* models with dimensionless couplings. Introduce canonical dimensions.

Both UV and IR divergences occur in field theories.

In particle physics, the UV divergences *must* be eliminated, in hydrodynamics it is *useful* to extract IR asymptotics.

IR and UV connected in *logarithmic* models with dimensionless couplings. Introduce canonical dimensions.

Separate spatial and temporal dimensions convenient. Conventions: $d_k^k = -d_x^k = 1$, $d_{\omega}^{\omega} = -d_t^{\omega} = 1$, $d_{\omega}^{\omega} = -d_{\omega}^k = 0$. Both UV and IR divergences occur in field theories.

- In particle physics, the UV divergences *must* be eliminated, in hydrodynamics it is *useful* to extract IR asymptotics.
- IR and UV connected in *logarithmic* models with dimensionless couplings. Introduce canonical dimensions.
- Separate spatial and temporal dimensions convenient. Conventions: $d_k^k = -d_x^k = 1$, $d_{\omega}^{\omega} = -d_t^{\omega} = 1$, $d_k^{\omega} = -d_{\omega}^k = 0$.

Total dimension of a quantity Q from the homogeneity of the free-field action under scaling $k \rightarrow \lambda k$, $\omega \rightarrow \lambda \omega$; here:

$$d_Q = d_Q^k + 2d_Q^\omega \,.$$

In stochastic hydrodynamics dimensions of fields from the dimensionless substantial derivative: $\mathbf{v}' [\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v}]$.

In stochastic hydrodynamics dimensions of fields from the dimensionless substantial derivative: $\mathbf{v}' [\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v}]$.

$$d_v^k = -1, \quad d_v^\omega = 1, \quad d_v = 1; d_{v'}^k = d+1, \quad d_{v'}^\omega = -1, \quad d_{v'} = d-1.$$

1

In stochastic hydrodynamics dimensions of fields from the dimensionless substantial derivative: $\mathbf{v}' [\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v}]$.

$$\begin{aligned} d_v^{\kappa} &= -1, & d_v^{\omega} &= 1, & d_v &= 1; \\ d_{v'}^{k} &= d+1, & d_{v'}^{\omega} &= -1, & d_{v'} &= d-1. \end{aligned}$$

Dimensions of the viscosity and coupling constant for $d_f(k) = g_{10}\nu_0^3 k^{4-d-2\varepsilon}$ (don't forget the Fourier transform!):

$$d_{\nu_0}^k = -2, \quad d_{\nu_0}^\omega = 1, \quad d_{\nu_0} = 0; d_{g_0}^k = 2\varepsilon, \quad d_{g_0}^\omega = 0, \quad d_{g_0} = 2\varepsilon.$$

7

In stochastic hydrodynamics dimensions of fields from the dimensionless substantial derivative: $\mathbf{v}' [\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v}]$.

$$d_v^k = -1, \quad d_v^\omega = 1, \quad d_v = 1; d_{v'}^k = d+1, \quad d_{v'}^\omega = -1, \quad d_{v'} = d-1.$$

Dimensions of the viscosity and coupling constant for $d_f(k) = g_{10}\nu_0^3 k^{4-d-2\varepsilon}$ (don't forget the Fourier transform!):

$$d_{\nu_0}^k = -2, \quad d_{\nu_0}^\omega = 1, \quad d_{\nu_0} = 0; d_{g_0}^k = 2\varepsilon, \quad d_{g_0}^\omega = 0, \quad d_{g_0} = 2\varepsilon.$$

The theory is logarithmic at $\varepsilon = 0$ in any space dimension d.

Canonical dimensions of generating functions

The basic generating function is rendered dimensionless

$$G(\mathbf{J}, \mathbf{J}') = \int \mathcal{D}v \int \mathcal{D}v' e^{S_{\rm NS}(\mathbf{v}, \mathbf{v}') + \mathbf{v}\mathbf{J} + \mathbf{v}'\mathbf{J}'}$$
$$= e^{\frac{1}{2}\frac{\delta}{\delta \mathbf{v}}\Delta_{11}\frac{\delta}{\delta \mathbf{v}} + \frac{\delta}{\delta \mathbf{v}}\Delta_{12}\frac{\delta}{\delta \mathbf{v}'}} e^{\mathbf{v}'(\mathbf{v}\nabla)\mathbf{v} + \mathbf{v}\mathbf{J} + \mathbf{v}'\mathbf{J}'}|_{\mathbf{v}=\mathbf{v}'=0}$$

when $d_v^k + d_J^k = d$, $d_v^{\omega} + d_J^{\omega} = 1$, hence $d_v + d_J = d + 2$.

Canonical dimensions of generating functions

The basic generating function is rendered dimensionless

$$G(\mathbf{J}, \mathbf{J}') = \int \mathcal{D}v \int \mathcal{D}v' e^{S_{\rm NS}(\mathbf{v}, \mathbf{v}') + \mathbf{v}\mathbf{J} + \mathbf{v}'\mathbf{J}'}$$
$$= e^{\frac{1}{2}\frac{\delta}{\delta \mathbf{v}}\Delta_{11}\frac{\delta}{\delta \mathbf{v}} + \frac{\delta}{\delta \mathbf{v}}\Delta_{12}\frac{\delta}{\delta \mathbf{v}'}} e^{\mathbf{v}'(\mathbf{v}\nabla)\mathbf{v} + \mathbf{v}\mathbf{J} + \mathbf{v}'\mathbf{J}'}|_{\mathbf{v}=\mathbf{v}'=0}$$

when $d_v^k + d_J^k = d$, $d_v^\omega + d_J^\omega = 1$, hence $d_v + d_J = d + 2$. Generating functions $W(\mathbf{J}, \mathbf{J'}) = \ln G(\mathbf{J}, \mathbf{J'})$ and

$$\Gamma(\mathbf{v}, \mathbf{v}') = W(\mathbf{J}, \mathbf{J}') - \mathbf{v}\mathbf{J} - \mathbf{v}'\mathbf{J}', \quad \mathbf{v} = \frac{\delta W}{\delta \mathbf{J}}, \ \mathbf{v}' = \frac{\delta W}{\delta \mathbf{J}'}$$

have zero canonical dimensions by definition.

Canonical dimensions of Green functions

Green functions are derivatives of generating functionals; hence, in the coordinate space

$$d_{W_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = d_{G_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_v + n'd_{v'},$$

$$d_{\Gamma_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_J + n'd'_J = (n+n')(d+2) - nd_v - n'd_{v'}.$$

Canonical dimensions of Green functions

Green functions are derivatives of generating functionals; hence, in the coordinate space

$$d_{W_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = d_{G_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_v + n'd_{v'},$$

$$d_{\Gamma_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_J + n'd'_J = (n+n')(d+2) - nd_v - n'd_{v'}.$$

In Fourier transforms frequency and wave-vector δ functions of conservation laws factorize. Thus, in the Fourier space

$$d_{W_{n,n'}} = d_{G_{n,n'}} = d + 2 + nd_v + n'd_{v'} - (n+n')(d+2),$$

$$d_{\Gamma_{n,n'}} = d + 2 - nd_v - n'd_{v'}.$$

Canonical dimensions of Green functions

Green functions are derivatives of generating functionals; hence, in the coordinate space

$$d_{W_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = d_{G_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_v + n'd_{v'},$$

$$d_{\Gamma_{n,n'}(\{t_i\},\{\mathbf{x}_i\})} = nd_J + n'd'_J = (n+n')(d+2) - nd_v - n'd_{v'}.$$

In Fourier transforms frequency and wave-vector δ functions of conservation laws factorize. Thus, in the Fourier space

$$d_{W_{n,n'}} = d_{G_{n,n'}} = d + 2 + nd_v + n'd_{v'} - (n+n')(d+2),$$

$$d_{\Gamma_{n,n'}} = d + 2 - nd_v - n'd_{v'}.$$

For instance

 $d_{\Gamma_{22}} = d + 2 - 2(d-1) = 4 - d, \quad d_{W_{12}} = d + 2 + d - 2(d+2) = -2.$

Power counting for one-irreducible functions

The superficial degree of divergence δ of a 1PI graph $\gamma(\{\omega_i\}, \{k_i\})$ is defined by the homogeneity relation

 $\gamma(\{\lambda^2\omega_i\},\{\lambda\mathbf{k}_i\}) = \lambda^{\delta}\gamma(\{\omega_i\},\{\mathbf{k}_i\})$

in which the same stretching is implied for the integration variables.

The superficial degree of divergence δ of a 1PI graph $\gamma(\{\omega_i\}, \{k_i\})$ is defined by the homogeneity relation

 $\gamma(\{\lambda^2 \omega_i\}, \{\lambda \mathbf{k}_i\}) = \lambda^{\delta} \gamma(\{\omega_i\}, \{\mathbf{k}_i\})$

in which the same stretching is implied for the integration variables.

The real degree of divergence δ' of a graph γ is obtained by subtracting minus *the number of factorizing vertex wave vectors*. In our case

$$\delta'_{\gamma} = d + 2 - V d_{g_0} - N d_v - N' d_{v'} - N'.$$

Classification of models

Finite number of graphs with δ' ≥ 0: superrenormalizable model;

Classification of models

- Finite number of graphs with $\delta' \ge 0$: superrenormalizable model;
- Finite number of 1PI functions with graphs $\delta' \ge 0$: renormalizable model;

- Finite number of graphs with $\delta' \ge 0$: superrenormalizable model;
- Finite number of 1PI functions with graphs $\delta' \ge 0$: renormalizable model;
- Infinite number of 1PI functions with graphs $\delta' \ge 0$: nonrenormalizable model.

Divergent 1PI functions of the NS problem

UV divergences in the one-irreducible graphs Γ . Let $d_{g_0} = 0$. Then for the graphs γ of a 1PI function Γ

 $\delta_{\gamma} = d_{\Gamma} \, .$

Divergent 1PI functions of the NS problem

UV divergences in the one-irreducible graphs Γ . Let $d_{g_0} = 0$. Then for the graphs γ of a 1PI function Γ

$$\delta_{\gamma} = d_{\Gamma} \, .$$

Graphs with N' = 0 and N' = 1, N = 0 vanish: $\delta \ge 0$ for the one-irreducible correlation functions $\langle vv' \rangle_{1-ir}$, $\langle vvv' \rangle_{1-ir}$:

$$\delta_{\langle vv'\rangle_{1-ir}} = 1, \quad \delta_{\langle vvv'\rangle_{1-ir}} = 0, \quad \delta_{\langle v'v'\rangle_{1-ir}} = 2-d.$$

Divergent 1PI functions of the NS problem

UV divergences in the one-irreducible graphs Γ . Let $d_{g_0} = 0$. Then for the graphs γ of a 1PI function Γ

$$\delta_{\gamma} = d_{\Gamma} \, .$$

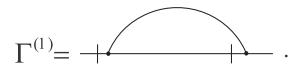
Graphs with N' = 0 and N' = 1, N = 0 vanish: $\delta \ge 0$ for the one-irreducible correlation functions $\langle vv' \rangle_{1-ir}$, $\langle vvv' \rangle_{1-ir}$:

$$\delta_{\langle vv'\rangle_{1-ir}} = 1, \quad \delta_{\langle vvv'\rangle_{1-ir}} = 0, \quad \delta_{\langle v'v'\rangle_{1-ir}} = 2-d.$$

The UV-divergent part of a graph is *subtracted* to produce a UV-finite *renormalized* function and a *counterterm*.

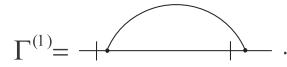
One-irreducible correlation functions

One-loop graph for the one-irreducible function $\langle vv' \rangle_{1-ir}$

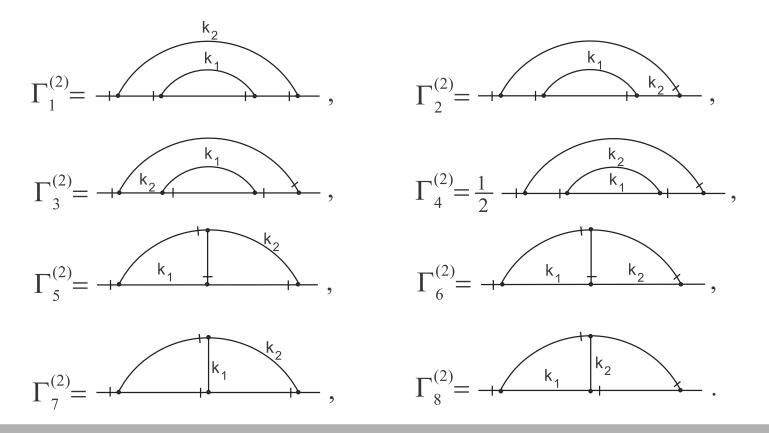


One-irreducible correlation functions

One-loop graph for the one-irreducible function $\langle vv' \rangle_{1-ir}$

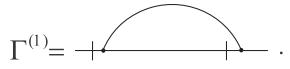


There are, however, 8 graphs in the two-loop approximation



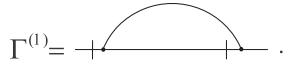
Subtraction of divergences effected by a *local* counterterm.

Subtraction of divergences effected by a *local* counterterm. For instance, the divergent part of the graph



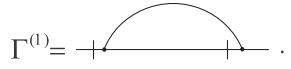
has been calculated as [with the sharp IR cutoff $\theta(m-k)$]

Subtraction of divergences effected by a *local* counterterm. For instance, the divergent part of the graph



has been calculated as [with the sharp IR cutoff $\theta(m-k)$] $\Gamma_{mn}^{(1)}(\omega, \mathbf{p}) \sim -\nu_0 p^2 \frac{(d-1)^2 (m)^{-2\varepsilon} g_0 \bar{S}_d}{8(d+2)\varepsilon}.$

Subtraction of divergences effected by a *local* counterterm. For instance, the divergent part of the graph



has been calculated as [with the sharp IR cutoff $\theta(m-k)$] $\Gamma_{mn}^{(1)}(\omega, \mathbf{p}) \sim -\nu_0 p^2 \frac{(d-1)^2 (m)^{-2\varepsilon} g_0 \bar{S}_d}{8(d+2)\varepsilon}.$

To subtract this term, add to the action the counterterm

$$\mathbf{v}'\nu_0 \frac{(d-1)^2 (m)^{-2\varepsilon} g_0 \bar{S}_d}{8(d+2)\varepsilon} \nabla^2 \mathbf{v} \,.$$

Counterterms produced by the graphs of the Navier-Stokes problem contain at least one factorized ∇ , so there are no counterterms of structure $v'\partial_t v$.

- Counterterms produced by the graphs of the Navier-Stokes problem contain at least one factorized ∇ , so there are no counterterms of structure $v'\partial_t v$.
- Galilei invariance preserves the covariant derivative $\partial_t \mathbf{v} + (\mathbf{v}\nabla)\mathbf{v}$: counterterm $v'(v\nabla)v$ is not generated either.

- Counterterms produced by the graphs of the Navier-Stokes problem contain at least one factorized ∇ , so there are no counterterms of structure $v'\partial_t v$.
- Galilei invariance preserves the covariant derivative $\partial_t \mathbf{v} + (\mathbf{v}\nabla)\mathbf{v}$: counterterm $v'(v\nabla)v$ is not generated either.

The only generic counterterm is $v' \nabla^2 v$ (for d > 2).

- Counterterms produced by the graphs of the Navier-Stokes problem contain at least one factorized ∇ , so there are no counterterms of structure $v'\partial_t v$.
- Galilei invariance preserves the covariant derivative $\partial_t \mathbf{v} + (\mathbf{v}\nabla)\mathbf{v}$: counterterm $v'(v\nabla)v$ is not generated either.
- The only generic counterterm is $v' \nabla^2 v$ (for d > 2).
- Separate analysis for d = 2, let d > 2 for the time being.

Renormalized correlation functions

A model with a finite number of one-irreducible correlation functions with $\delta \ge 0$ is *renormalizable*.

Renormalized correlation functions

A model with a finite number of one-irreducible correlation functions with $\delta \ge 0$ is *renormalizable*.

Basic statement of renormalization theory: UV divergences of a renormalizable model may be absorbed in a *redifinition* of parameters such that the *renormalized action*

$$S_{\rm NSR}(\mathbf{v}, \mathbf{v}') = \frac{1}{2} \mathbf{v}' D \mathbf{v}' - \mathbf{v}' \left[\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v} - \nu Z_{\nu} \nabla^2 \mathbf{v} \right]$$

generates UV finite correlation functions such that

$$\int \mathcal{D}v \mathcal{D}v' v(1) \dots v(n) e^{S_{\rm NS}(\mathbf{v}, \mathbf{v}')} = \int \mathcal{D}v \mathcal{D}v' v(1) \dots v(n) e^{S_{\rm NSR}(\mathbf{v}, \mathbf{v}')}$$

Renormalized correlation functions

A model with a finite number of one-irreducible correlation functions with $\delta \ge 0$ is *renormalizable*.

Basic statement of renormalization theory: UV divergences of a renormalizable model may be absorbed in a *redifinition of parameters* such that the *renormalized action*

$$S_{\rm NSR}(\mathbf{v}, \mathbf{v}') = \frac{1}{2} \mathbf{v}' D \mathbf{v}' - \mathbf{v}' \left[\partial_t \mathbf{v} + (\mathbf{v} \nabla) \mathbf{v} - \nu Z_{\nu} \nabla^2 \mathbf{v} \right]$$

generates UV finite correlation functions such that

$$\int \mathcal{D}v \mathcal{D}v' v(1) \dots v(n) e^{S_{\rm NS}(\mathbf{v}, \mathbf{v}')} = \int \mathcal{D}v \mathcal{D}v' v(1) \dots v(n) e^{S_{\rm NSR}(\mathbf{v}, \mathbf{v}')}$$

Most straightforwardly the *renormalization constant* Z_{ν} is found just from this condition.

Homogeneous renormalization-group equation

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$\nu_0 = \nu Z_{\nu}, \qquad g_{01} = D_{01}\nu_0^{-3} = g_1\mu^{2\epsilon}Z_{\nu}^{-3}.$$

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$\nu_0 = \nu Z_{\nu}, \qquad g_{01} = D_{01}\nu_0^{-3} = g_1\mu^{2\epsilon}Z_{\nu}^{-3}.$$

Bare quantities independent of μ : the homogeneous RG equation; for the pair correlation function

$$\left[\mu\partial_{\mu} + \beta_{1}\partial_{g_{1}} - \gamma_{\nu}\nu\partial_{\nu}\right]G = 0, \quad \gamma_{\nu} = \mu\partial_{\mu}\big|_{0}\ln Z_{\nu}, \quad \beta_{1} = \mu\partial_{\mu}\big|_{0}g_{1}$$

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$\nu_0 = \nu Z_{\nu}, \qquad g_{01} = D_{01}\nu_0^{-3} = g_1\mu^{2\epsilon}Z_{\nu}^{-3}.$$

Bare quantities independent of μ : the homogeneous RG equation; for the pair correlation function

$$\left[\mu\partial_{\mu} + \beta_{1}\partial_{g_{1}} - \gamma_{\nu}\nu\partial_{\nu}\right]G = 0, \quad \gamma_{\nu} = \mu\partial_{\mu}\big|_{0}\ln Z_{\nu}, \quad \beta_{1} = \mu\partial_{\mu}\big|_{0}g_{1}$$

where derivatives taken with bare parameters fixed and

$$\int d\mathbf{r} \, \exp\left[\mathrm{i}(\mathbf{k} \cdot \mathbf{r})\right] \langle v_n(t, \mathbf{x} + \mathbf{r}) v_m(t, \mathbf{x}) \rangle = P_{nm}(\mathbf{k}) G(k)$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$G(k) = \nu^2 k^{2-d} R\left(\frac{k}{\mu}, g_1, \frac{m}{\mu}\right) = \bar{\nu}^2 k^{2-d} R\left(1, \bar{g}_1, \frac{m}{k}\right) \,.$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$G(k) = \nu^2 k^{2-d} R\left(\frac{k}{\mu}, g_1, \frac{m}{\mu}\right) = \bar{\nu}^2 k^{2-d} R\left(1, \bar{g}_1, \frac{m}{k}\right) \,.$$

Invariant (running) parameters $\bar{g}_1(\mu/k, g_1)$, $\bar{\nu}(\mu/k, g_1)$: first integrals of the RG equation, e.g.

$$\left[\mu\partial_{\mu}+\beta_{1}\partial_{g_{1}}-\gamma_{\nu}\nu\partial_{\nu}\right]\bar{g}_{1}=0,\quad \bar{g}_{1}(1,g_{1})=g_{1}.$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$G(k) = \nu^2 k^{2-d} R\left(\frac{k}{\mu}, g_1, \frac{m}{\mu}\right) = \bar{\nu}^2 k^{2-d} R\left(1, \bar{g}_1, \frac{m}{k}\right) \,.$$

Invariant (running) parameters $\bar{g}_1(\mu/k, g_1)$, $\bar{\nu}(\mu/k, g_1)$: first integrals of the RG equation, e.g.

$$\left[\mu\partial_{\mu} + \beta_1\partial_{g_1} - \gamma_{\nu}\nu\partial_{\nu}\right]\bar{g}_1 = 0, \quad \bar{g}_1(1,g_1) = g_1.$$

Connection between bare and invariant parameters:

$$g_{10} = \bar{g}_1 k^{2\varepsilon} Z_{\nu}^{-3} \left(\bar{g}_1, \frac{m}{k} \right), \quad \bar{\nu} = \left(\frac{D_{10} k^{-2\varepsilon}}{\bar{g}_1} \right)^{1/3}.$$

Critical dimensions at the fixed point of RG

For $\varepsilon > 0 \exists$ an IR-stable fixed point: $\overline{g}_1 \rightarrow g_{1*} \propto \varepsilon$. Asymptotics of correlation and response functions *W* are generalized homogeneous functions

$$W|_{IR}(\{\lambda^{-\Delta_{\omega}}t_i\},\{\lambda^{-1}\mathbf{x}_i\})=\lambda^{\sum_{\Phi}\Delta_{\Phi}}W|_{IR}(\{t_i\},\{\mathbf{x}_i\}).$$

Here, Δ_{ω} and Δ_{Φ} are critical dimensions of ω and $\Phi = \{v, v'\}$.

Critical dimensions at the fixed point of RG

For $\varepsilon > 0 \exists$ an IR-stable fixed point: $\overline{g}_1 \rightarrow g_{1*} \propto \varepsilon$. Asymptotics of correlation and response functions *W* are generalized homogeneous functions

$$W|_{IR}(\{\lambda^{-\Delta_{\omega}}t_i\},\{\lambda^{-1}\mathbf{x}_i\})=\lambda^{\sum_{\Phi}\Delta_{\Phi}}W|_{IR}(\{t_i\},\{\mathbf{x}_i\}).$$

Here, Δ_{ω} and Δ_{Φ} are critical dimensions of ω and $\Phi = \{v, v'\}$. They are all expressed through $\gamma_{\nu}^* \equiv \gamma_{\nu}(g_*)$:

$$\Delta_v = 1 - \gamma_{\nu}^*, \quad \Delta_{v'} = d - \Delta_{\varphi}, \quad \Delta_{\omega} = 2 - \gamma_{\nu}^*.$$

Due to Galilei invariance, basic critical dimensions are exact:

$$\Delta_v = 1 - 2\varepsilon/3, \quad \Delta_\omega = 2 - 2\varepsilon/3.$$

Scaling in terms of physical variables

Scaling in terms of physical variables

IR fixed point yields large-scale limit ($k \rightarrow 0$, u = m/k = const)

$$G(k) \sim (D_{10}/g_{1*})^{2/3} k^{2-d-4\varepsilon/3} R(1, g_{1*}, u), \ R(1, g_{1*}, u) = \sum_{n=1}^{\infty} \varepsilon^n R_n(u)$$

Scaling in terms of physical variables

IR fixed point yields large-scale limit ($k \rightarrow 0$, u = m/k = const)

$$G(k) \sim (D_{10}/g_{1*})^{2/3} k^{2-d-4\varepsilon/3} R(1, g_{1*}, u), \ R(1, g_{1*}, u) = \sum_{n=1}^{\infty} \varepsilon^n R_n(u)$$

Translate in traditional variables; trade D_{10} for the mean energy injection rate $\overline{\mathcal{E}}$ (2 > ε > 0):

$$\overline{\mathcal{E}} = \frac{(d-1)}{2(2\pi)^d} \int d\mathbf{k} \, d_f(k) \, \Rightarrow \, D_{10} = \frac{4(2-\varepsilon) \, \Lambda^{2\varepsilon-4} \overline{\mathcal{E}}}{\overline{S}_d(d-1)} \,, \, \Lambda = (\overline{\mathcal{E}}/\nu_0^3)^{1/4}$$

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2-\varepsilon)/\overline{S}_d(d-1)g_{1*}\right]^{2/3} \nu_0^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1,g_{1*},u).$$

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2-\varepsilon)/\overline{S}_d(d-1)g_{1*}\right]^{2/3} \nu_0^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1,g_{1*},u) \,.$$

The desired Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2-\varepsilon)/\overline{S}_d(d-1)g_{1*}\right]^{2/3} \nu_0^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1,g_{1*},u).$$

The desired Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) m^{4-2\varepsilon} \overline{\mathcal{E}} / \overline{S}_d(d-1), \quad m = 1/L.$$

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2-\varepsilon)/\overline{S}_d(d-1)g_{1*}\right]^{2/3} \nu_0^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1,g_{1*},u).$$

The desired Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) m^{4-2\varepsilon} \overline{\mathcal{E}} / \overline{S}_d(d-1), \quad m = 1/L.$$

Yields independence of ν_0 , Kolmogorov exponents $\forall \varepsilon > 2$:

$$G(k) \sim \left[4(\varepsilon - 2)/\overline{S}_d(d - 1)g_{1*}\right]^{2/3} \overline{\mathcal{E}}^{2/3} k^{-d - 2/3} u^{4(2-\varepsilon)/3} R(1, g_{1*}, u).$$

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_0 for $2 > \varepsilon > 0$:

$$G(k) \sim \left[4(2-\varepsilon)/\overline{S}_d(d-1)g_{1*}\right]^{2/3} \nu_0^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon/3} k^{2-d-4\varepsilon/3} R(1,g_{1*},u).$$

The desired Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Freezing of scaling dimensions for $\varepsilon > 2$ [Adzhemyan, Antonov & Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$D_{10} = 4(\varepsilon - 2) \, m^{4-2\varepsilon} \overline{\mathcal{E}} / \overline{\mathcal{S}}_d(d-1) \,, \quad m = 1/L \,.$$

Yields independence of ν_0 , Kolmogorov exponents $\forall \varepsilon > 2$:

$$G(k) \sim \left[4(\varepsilon - 2)/\overline{S}_d(d - 1)g_{1*}\right]^{2/3} \overline{\mathcal{E}}^{2/3} k^{-d - 2/3} u^{4(2-\varepsilon)/3} R(1, g_{1*}, u).$$

Analysis of the inertial-range limit $u = m/k \rightarrow 0$ beyond RG.