Renormalization group in stochastic theory of developed turbulence 3

Operator-product expansion and scaling in the inertial range

Juha Honkonen
National Defence University, Helsinki, Finland

Outline

- Calculation of renormalization constants
- Homogeneous renormalization-group equation
- Invariant (running) parameters
- Infrared-stable fixed point
- Critical dimensions at the fixed point of RG
- Scaling in terms of physical variables
- Freezing of dimensions in the inertial range
- Operator-product expansion
- Renormalization of composite operators

Calculation of renormalization constants

The renormalization theorem states

$$
\begin{aligned}
G\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v & \int \mathcal{D} v^{\prime} e^{S_{\mathrm{Ns}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v} \mathbf{J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}} \\
& =G_{R}\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v \int \mathcal{D} v^{\prime} e^{S_{\mathrm{NSR}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v} \mathbf{J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}}
\end{aligned}
$$

with finite $G_{R n n^{\prime}}$ in terms of the renormalized parameters.

Calculation of renormalization constants

The renormalization theorem states

$$
\begin{aligned}
& G\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v \int \mathcal{D} v^{\prime} e^{S_{\mathrm{NS}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v} \mathbf{J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}} \\
&=G_{R}\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v \int \mathcal{D} v^{\prime} e^{S_{\mathrm{NSR}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}}
\end{aligned}
$$

with finite $G_{R n n^{\prime}}$ in terms of the renormalized parameters.
The renormalized 1PI function $\Gamma_{R v v^{\prime}}$ is expressed as

$$
\Gamma_{R v v^{\prime}}=-\nu Z_{\nu} p^{2}+\square_{+}+\ldots
$$

Calculation of renormalization constants

The renormalization theorem states

$$
\begin{aligned}
& G\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v \int \mathcal{D} v^{\prime} e^{S_{\mathrm{NS}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v} \mathbf{J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}} \\
&=G_{R}\left(\mathbf{J}, \mathbf{J}^{\prime}\right)=\int \mathcal{D} v \int \mathcal{D} v^{\prime} e^{S_{\mathrm{NSR}}\left(\mathbf{v}, \mathbf{v}^{\prime}\right)+\mathbf{v} \mathbf{J}+\mathbf{v}^{\prime} \mathbf{J}^{\prime}}
\end{aligned}
$$

with finite $G_{R n n^{\prime}}$ in terms of the renormalized parameters. The renormalized 1PI function $\Gamma_{R v v^{\prime}}$ is expressed as

$$
\Gamma_{R v v^{\prime}}=-\nu Z_{\nu} p^{2}+\square_{+}+\ldots
$$

Leading order $Z_{\nu}=1$ in the graph, in the MS scheme then

$$
Z_{\nu}=1-\frac{(d-1) \bar{S}_{d}}{8(d+2)} \frac{g_{1}}{\varepsilon}+\ldots, \quad \bar{S}_{d}=2 \pi^{d / 2} /(2 \pi)^{d} \Gamma(d / 2) .
$$

Homogeneous renormalization-group equatio

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$
\nu_{0}=\nu Z_{\nu}, \quad g_{01}=D_{01} \nu_{0}^{-3}=g_{1} \mu^{2 \epsilon} Z_{\nu}^{-3} .
$$

Powerlike d_{f} is not renormalized, g_{1} from connection between g_{01} and D_{01}.

Homogeneous renormalization-group equation

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$
\nu_{0}=\nu Z_{\nu}, \quad g_{01}=D_{01} \nu_{0}^{-3}=g_{1} \mu^{2 \epsilon} Z_{\nu}^{-3} .
$$

Powerlike d_{f} is not renormalized, g_{1} from connection between g_{01} and D_{01}.

Bare quantities independent of μ : the homogeneous RG equation. For the pair correlation function, for instance,

$$
\left[\mu \partial_{\mu}+\beta_{1} \partial_{g_{1}}-\gamma_{\nu} \nu \partial_{\nu}\right] G=0, \gamma_{\nu}=\left.\mu \partial_{\mu}\right|_{0} \ln Z_{\nu}, \beta_{1}=\left.\mu \partial_{\mu}\right|_{0} g_{1}
$$

Homogeneous renormalization-group equation

Introduce a scaling parameter μ in the connection between renormalized and unrenormalized (bare) parameters:

$$
\nu_{0}=\nu Z_{\nu}, \quad g_{01}=D_{01} \nu_{0}^{-3}=g_{1} \mu^{2 \epsilon} Z_{\nu}^{-3} .
$$

Powerlike d_{f} is not renormalized, g_{1} from connection between g_{01} and D_{01}.

Bare quantities independent of μ : the homogeneous RG equation. For the pair correlation function, for instance,

$$
\left[\mu \partial_{\mu}+\beta_{1} \partial_{g_{1}}-\gamma_{\nu} \nu \partial_{\nu}\right] G=0, \gamma_{\nu}=\left.\mu \partial_{\mu}\right|_{0} \ln Z_{\nu}, \beta_{1}=\left.\mu \partial_{\mu}\right|_{0} g_{1}
$$

where derivatives taken with bare parameters fixed and

$$
\int d \mathbf{r} \exp [\mathrm{i}(\mathbf{k} \cdot \mathbf{r})]\left\langle v_{n}(t, \mathbf{x}+\mathbf{r}) v_{m}(t, \mathbf{x})\right\rangle=P_{n m}(\mathbf{k}) G(k)
$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$
G(k)=\nu^{2} k^{2-d} R\left(\frac{k}{\mu}, g_{1}, \frac{m}{\mu}\right)=\bar{\nu}^{2} k^{2-d} R\left(1, \bar{g}_{1}, \frac{m}{k}\right) .
$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$
G(k)=\nu^{2} k^{2-d} R\left(\frac{k}{\mu}, g_{1}, \frac{m}{\mu}\right)=\bar{\nu}^{2} k^{2-d} R\left(1, \bar{g}_{1}, \frac{m}{k}\right) .
$$

Invariant (running) parameters $\bar{g}_{1}\left(\mu / k, g_{1}\right), \bar{\nu}\left(\mu / k, g_{1}\right)$: first integrals of the RG equation, e.g.

$$
\mu \partial_{\mu} g_{1}=\beta_{1}, \quad \bar{g}_{1}\left(1, g_{1}\right)=g_{1} .
$$

Invariant (running) parameters

RG solution for the velocity correlation function:

$$
G(k)=\nu^{2} k^{2-d} R\left(\frac{k}{\mu}, g_{1}, \frac{m}{\mu}\right)=\bar{\nu}^{2} k^{2-d} R\left(1, \bar{g}_{1}, \frac{m}{k}\right) .
$$

Invariant (running) parameters $\bar{g}_{1}\left(\mu / k, g_{1}\right), \bar{\nu}\left(\mu / k, g_{1}\right)$: first integrals of the RG equation, e.g.

$$
\mu \partial_{\mu} g_{1}=\beta_{1}, \quad \bar{g}_{1}\left(1, g_{1}\right)=g_{1} .
$$

Connection between g_{1} and ν yields the expression:

$$
\beta_{1}\left(g_{1}, \varepsilon\right)=g_{1}\left[-2 \varepsilon+3 \gamma_{\nu}\left(g_{1}\right)\right] .
$$

Infrared-stable fixed point

In one-loop approximation in the MS scheme

$$
\gamma_{\nu}=(d-1) \bar{S}_{d} g_{1} / 4(d+2), \beta_{1}=g_{1}\left[-2 \varepsilon+3(d-1) \bar{S}_{d} g_{1} / 4(d+2)\right] .
$$

Infrared-stable fixed point

In one-loop approximation in the MS scheme

$$
\gamma_{\nu}=(d-1) \bar{S}_{d} g_{1} / 4(d+2), \beta_{1}=g_{1}\left[-2 \varepsilon+3(d-1) \bar{S}_{d} g_{1} / 4(d+2)\right] .
$$

From the solution of the RG equation for \bar{g}_{1} it follows that there is a physical ($g_{1}>0$) IR-attractive fixed point for $\varepsilon>0$:

$$
g_{1 *}=8(d+2) \varepsilon / 3(d-1) \bar{S}_{d}, \quad \beta\left(g_{1 *}\right)=0, \quad \beta^{\prime}\left(g_{1 *}\right)=2 \varepsilon>0 .
$$

Infrared-stable fixed point

In one-loop approximation in the MS scheme

$$
\gamma_{\nu}=(d-1) \bar{S}_{d} g_{1} / 4(d+2), \beta_{1}=g_{1}\left[-2 \varepsilon+3(d-1) \bar{S}_{d} g_{1} / 4(d+2)\right] .
$$

From the solution of the RG equation for \bar{g}_{1} it follows that there is a physical ($g_{1}>0$) IR-attractive fixed point for $\varepsilon>0$:

$$
g_{1^{*}}=8(d+2) \varepsilon / 3(d-1) \bar{S}_{d}, \quad \beta\left(g_{1 *}\right)=0, \quad \beta^{\prime}\left(g_{1 *}\right)=2 \varepsilon>0 .
$$

The value of γ_{ν} at the fixed point is found exactly:

$$
\gamma_{\nu}^{*} \equiv \gamma_{\nu}\left(g_{*}\right)=2 \varepsilon / 3,
$$

without corrections of order $\varepsilon^{2}, \varepsilon^{3}$ etc.

Critical dimensions at the fixed point of RG

For $\varepsilon>0 \exists$ an IR-stable fixed point: $\bar{g}_{1} \rightarrow g_{1 *} \propto \varepsilon$. Asymptotics of functions W near this fixed point are generalized homogeneous functions

$$
\left.W\right|_{I R}\left(\left\{\lambda^{-\Delta_{\omega}} t_{i}\right\},\left\{\lambda^{-1} \mathbf{x}_{i}\right\}\right)=\left.\lambda^{\sum_{\Phi} \Delta_{\Phi}} W\right|_{I R}\left(\left\{t_{i}\right\},\left\{\mathbf{x}_{i}\right\}\right)
$$

Here, Δ_{ω} and Δ_{Φ} are critical dimensions of ω and $\Phi=\left\{v, v^{\prime}\right\}$.

Critical dimensions at the fixed point of RG

For $\varepsilon>0 \exists$ an IR-stable fixed point: $\bar{g}_{1} \rightarrow g_{1 *} \propto \varepsilon$. Asymptotics of functions W near this fixed point are generalized homogeneous functions

$$
\left.W\right|_{I R}\left(\left\{\lambda^{-\Delta_{\omega}} t_{i}\right\},\left\{\lambda^{-1} \mathbf{x}_{i}\right\}\right)=\left.\lambda^{\sum_{\Phi} \Delta_{\Phi}} W\right|_{I R}\left(\left\{t_{i}\right\},\left\{\mathbf{x}_{i}\right\}\right)
$$

Here, Δ_{ω} and Δ_{Φ} are critical dimensions of ω and $\Phi=\left\{v, v^{\prime}\right\}$. They are all expressed through $\gamma_{\nu}^{*} \equiv \gamma_{\nu}\left(g_{*}\right)$:

$$
\Delta_{v}=1-\gamma_{\nu}^{*}, \quad \Delta_{v^{\prime}}=d-\Delta_{\varphi}, \quad \Delta_{\omega}=2-\gamma_{\nu}^{*} .
$$

Due to Galilei invariance, basic critical dimensions are exact:

$$
\Delta_{v}=1-2 \varepsilon / 3, \quad \Delta_{\omega}=2-2 \varepsilon / 3
$$

Critical dimensions at the fixed point of RG

For $\varepsilon>0 \exists$ an IR-stable fixed point: $\bar{g}_{1} \rightarrow g_{1 *} \propto \varepsilon$. Asymptotics of functions W near this fixed point are generalized homogeneous functions

$$
\left.W\right|_{I R}\left(\left\{\lambda^{-\Delta_{\omega}} t_{i}\right\},\left\{\lambda^{-1} \mathbf{x}_{i}\right\}\right)=\left.\lambda^{\sum_{\Phi} \Delta_{\Phi}} W\right|_{I R}\left(\left\{t_{i}\right\},\left\{\mathbf{x}_{i}\right\}\right)
$$

Here, Δ_{ω} and Δ_{Φ} are critical dimensions of ω and $\Phi=\left\{v, v^{\prime}\right\}$. They are all expressed through $\gamma_{\nu}^{*} \equiv \gamma_{\nu}\left(g_{*}\right)$:

$$
\Delta_{v}=1-\gamma_{\nu}^{*}, \quad \Delta_{v^{\prime}}=d-\Delta_{\varphi}, \quad \Delta_{\omega}=2-\gamma_{\nu}^{*} .
$$

Due to Galilei invariance, basic critical dimensions are exact:

$$
\Delta_{v}=1-2 \varepsilon / 3, \quad \Delta_{\omega}=2-2 \varepsilon / 3
$$

Scaling for Green functions with separated arguments!

Scaling in terms of physical variables

IR fixed point yields large-scale limit ($k \rightarrow 0, u=m / k=$ const $)$

$$
G(k) \sim\left(D_{10} / g_{1 *}\right)^{2 / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right), R\left(1, g_{1 *}, u\right)=\sum_{n=1}^{\infty} \varepsilon^{n} R_{n}(u)
$$

Scaling in terms of physical variables

IR fixed point yields large-scale limit ($k \rightarrow 0, u=m / k=$ const)

$$
G(k) \sim\left(D_{10} / g_{1 *}\right)^{2 / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right), R\left(1, g_{1 *}, u\right)=\sum_{n=1}^{\infty} \varepsilon^{n} R_{n}(u)
$$

Translate into traditional variables; trade D_{10} for the mean energy injection rate $\overline{\mathcal{E}}(2>\varepsilon>0)$:
$\overline{\mathcal{E}}=\frac{(d-1)}{2(2 \pi)^{d}} \int d \mathbf{k} d_{f}(k) \Rightarrow D_{10}=\frac{4(2-\varepsilon) \Lambda^{2 \varepsilon-4} \overline{\mathcal{E}}}{\bar{S}_{d}(d-1)}, \Lambda=\left(\overline{\mathcal{E}} / \nu_{0}^{3}\right)^{1 / 4}$.

Freezing of dimensions in the inertial range

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_{0} for $2>\varepsilon>0$:

$$
G(k) \sim\left[4(2-\varepsilon) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \nu_{0}^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right) .
$$

Freezing of dimensions in the inertial range

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_{0} for $2>\varepsilon>0$:

$$
G(k) \sim\left[4(2-\varepsilon) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \nu_{0}^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right) .
$$

Yields Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).

Freezing of dimensions in the inertial range

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_{0} for $2>\varepsilon>0$:

$$
G(k) \sim\left[4(2-\varepsilon) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \nu_{0}^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right) .
$$

Yields Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).
Freezing of scaling dimensions for $\varepsilon>2$ [Adzhemyan, Antonov \& Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$
D_{10}=4(\varepsilon-2) m^{4-2 \varepsilon} \overline{\mathcal{E}} / \bar{S}_{d}(d-1), \quad m=1 / L .
$$

Freezing of dimensions in the inertial range

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_{0} for $2>\varepsilon>0$:

$$
G(k) \sim\left[4(2-\varepsilon) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \nu_{0}^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right) .
$$

Yields Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).
Freezing of scaling dimensions for $\varepsilon>2$ [Adzhemyan, Antonov \& Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$
D_{10}=4(\varepsilon-2) m^{4-2 \varepsilon} \overline{\mathcal{E}} / \bar{S}_{d}(d-1), \quad m=1 / L .
$$

Yields independence of ν_{0}, Kolmogorov exponents $\forall \varepsilon>2$:

$$
G(k) \sim\left[4(\varepsilon-2) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \overline{\mathcal{E}}^{2 / 3} k^{-d-2 / 3} u^{4(2-\varepsilon) / 3} R\left(1, g_{1 *}, u\right) .
$$

Freezing of dimensions in the inertial range

Large-scale scaling in terms of $\overline{\mathcal{E}}$ and ν_{0} for $2>\varepsilon>0$:

$$
G(k) \sim\left[4(2-\varepsilon) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \nu_{0}^{2-\varepsilon} \overline{\mathcal{E}}^{\varepsilon / 3} k^{2-d-4 \varepsilon / 3} R\left(1, g_{1 *}, u\right) .
$$

Yields Kolmogorov scaling, when $\varepsilon \rightarrow 2$ (IR pumping).
Freezing of scaling dimensions for $\varepsilon>2$ [Adzhemyan, Antonov \& Vasil'ev (1989)]: D_{10} acquires scale dependence through

$$
D_{10}=4(\varepsilon-2) m^{4-2 \varepsilon} \overline{\mathcal{E}} / \bar{S}_{d}(d-1), \quad m=1 / L .
$$

Yields independence of ν_{0}, Kolmogorov exponents $\forall \varepsilon>2$:

$$
G(k) \sim\left[4(\varepsilon-2) / \bar{S}_{d}(d-1) g_{1 *}\right]^{2 / 3} \overline{\mathcal{E}}^{2 / 3} k^{-d-2 / 3} u^{4(2-\varepsilon) / 3} R\left(1, g_{1 *}, u\right) .
$$

Analysis of the inertial-range limit $u=m / k \rightarrow 0$ beyond RG.

Operator-product expansion

The limit $u=m / k \rightarrow 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F :

$$
F_{1}\left(t, \mathbf{x}_{1}\right) F_{2}\left(t, \mathbf{x}_{2}\right)=\sum_{\alpha} C_{\alpha}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) F_{\alpha}\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2, t\right] .
$$

C_{α} analytic in $(m r)^{2}$: singularities due to dangerous operators $\left\langle F_{\alpha}(x)\right\rangle \propto m^{\Delta_{F_{\alpha}}}$ with $\Delta_{F_{\alpha}}<0$.

Operator-product expansion

The limit $u=m / k \rightarrow 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F :

$$
F_{1}\left(t, \mathbf{x}_{1}\right) F_{2}\left(t, \mathbf{x}_{2}\right)=\sum_{\alpha} C_{\alpha}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) F_{\alpha}\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2, t\right] .
$$

C_{α} analytic in $(m r)^{2}$: singularities due to dangerous operators $\left\langle F_{\alpha}(x)\right\rangle \propto m^{\Delta_{F_{\alpha}}}$ with $\Delta_{F_{\alpha}}<0$.

A composite operator is a (local) product of fields and their derivatives, e.g. $v^{n},(\nabla v)^{2}$.

Operator-product expansion

The limit $u=m / k \rightarrow 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F :

$$
F_{1}\left(t, \mathbf{x}_{1}\right) F_{2}\left(t, \mathbf{x}_{2}\right)=\sum_{\alpha} C_{\alpha}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) F_{\alpha}\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2, t\right] .
$$

C_{α} analytic in $(m r)^{2}$: singularities due to dangerous operators $\left\langle F_{\alpha}(x)\right\rangle \propto m^{\Delta_{F_{\alpha}}}$ with $\Delta_{F_{\alpha}}<0$.
A composite operator is a (local) product of fields and their derivatives, e.g. $v^{n},(\nabla v)^{2}$.
Composite operators give rise to new divergences: merging points in coordinate space creates new loop integrals in the wave-vector space.

Operator-product expansion

The limit $u=m / k \rightarrow 0$ beyond RG. To collect terms $\varepsilon \ln u \sim 1$, use operator-product expansion for composite operators F :

$$
F_{1}\left(t, \mathbf{x}_{1}\right) F_{2}\left(t, \mathbf{x}_{2}\right)=\sum_{\alpha} C_{\alpha}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) F_{\alpha}\left[\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2, t\right] .
$$

C_{α} analytic in $(m r)^{2}$: singularities due to dangerous operators $\left\langle F_{\alpha}(x)\right\rangle \propto m^{\Delta_{F_{\alpha}}}$ with $\Delta_{F_{\alpha}}<0$.
A composite operator is a (local) product of fields and their derivatives, e.g. $v^{n},(\nabla v)^{2}$.
Composite operators give rise to new divergences: merging points in coordinate space creates new loop integrals in the wave-vector space.

Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

$$
S_{n}(r)=\left\langle\left[v_{\|}(t, \mathbf{x}+\mathbf{r})-v_{\|}(t, \mathbf{x})\right]^{n}\right\rangle, \quad v_{\|}=\frac{\mathbf{v} \cdot \mathbf{r}}{r} .
$$

Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

$$
S_{n}(r)=\left\langle\left[v_{\|}(t, \mathbf{x}+\mathbf{r})-v_{\|}(t, \mathbf{x})\right]^{n}\right\rangle, \quad v_{\|}=\frac{\mathbf{v} \cdot \mathbf{r}}{r} .
$$

Kolmogorov scaling (1941) in the inertial range:

$$
S_{n}(r) \propto(\bar{\varepsilon} r)^{n / 3}, \quad \eta \ll r \ll L .
$$

Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

$$
S_{n}(r)=\left\langle\left[v_{\|}(t, \mathbf{x}+\mathbf{r})-v_{\|}(t, \mathbf{x})\right]^{n}\right\rangle, \quad v_{\|}=\frac{\mathbf{v} \cdot \mathbf{r}}{r} .
$$

Kolmogorov scaling (1941) in the inertial range:

$$
S_{n}(r) \propto(\bar{\varepsilon} r)^{n / 3}, \quad \eta \ll r \ll L .
$$

Kolmogorov constant C_{K} and $\frac{4}{5}$ (at $d=3$) law

$$
S_{2}(r) \sim C_{K}(\bar{\varepsilon} r)^{2 / 3}, \quad S_{3}(r) \sim-\frac{12}{d(d+2)} \bar{\varepsilon} r .
$$

Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure functions of the velocity field

$$
S_{n}(r)=\left\langle\left[v_{\|}(t, \mathbf{x}+\mathbf{r})-v_{\|}(t, \mathbf{x})\right]^{n}\right\rangle, \quad v_{\|}=\frac{\mathbf{v} \cdot \mathbf{r}}{r} .
$$

Kolmogorov scaling (1941) in the inertial range:

$$
S_{n}(r) \propto(\bar{\varepsilon} r)^{n / 3}, \quad \eta \ll r \ll L .
$$

Kolmogorov constant C_{K} and $\frac{4}{5}$ (at $d=3$) law

$$
S_{2}(r) \sim C_{K}(\bar{\varepsilon} r)^{2 / 3}, \quad S_{3}(r) \sim-\frac{12}{d(d+2)} \bar{\varepsilon} r .
$$

Anomalous scaling: exponents of S_{n} nonlinear in n.

Renormalization of composite operators

Renormalization of composite operators on equal footing with the renormalization of the dynamic action: add terms corresponding to composite operators and calculate in the linear order.

Renormalization of composite operators

Renormalization of composite operators on equal footing with the renormalization of the dynamic action: add terms corresponding to composite operators and calculate in the linear order.

Composite operators mix under renormalization: to obtain UV-finite correlation functions, sum over renormalized composite operators in the correlation function to obtain

$$
R\left(1, g_{1 *}, u\right)=\sum_{F} C_{F}(u) u^{\Delta_{F}} .
$$

Renormalization of composite operators

Renormalization of composite operators on equal footing with the renormalization of the dynamic action: add terms corresponding to composite operators and calculate in the linear order.

Composite operators mix under renormalization: to obtain UV-finite correlation functions, sum over renormalized composite operators in the correlation function to obtain

$$
R\left(1, g_{1 *}, u\right)=\sum_{F} C_{F}(u) u^{\Delta_{F}} .
$$

Dangerous operators not known for $0<\varepsilon<2: u \rightarrow 0$ safe!

