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Calculation of renormalization constants

The renormalization theorem states

G(J,J′) =

∫

Dv

∫

Dv′ eSNS(v,v′)+vJ+v
′
J
′

= GR(J,J′) =

∫

Dv

∫

Dv′ eSNSR(v,v′)+vJ+v
′
J
′

with finite GRnn′ in terms of the renormalized parameters.

Renormalization group in stochastic theory of developed turbulence 3 – p. 3/11



Calculation of renormalization constants

The renormalization theorem states

G(J,J′) =

∫

Dv

∫

Dv′ eSNS(v,v′)+vJ+v
′
J
′

= GR(J,J′) =

∫

Dv

∫

Dv′ eSNSR(v,v′)+vJ+v
′
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′

with finite GRnn′ in terms of the renormalized parameters.
The renormalized 1PI function ΓRvv′ is expressed as

ΓRvv′ = −νZνp
2 + + . . .
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Calculation of renormalization constants

The renormalization theorem states

G(J,J′) =

∫

Dv

∫

Dv′ eSNS(v,v′)+vJ+v
′
J
′

= GR(J,J′) =

∫

Dv

∫

Dv′ eSNSR(v,v′)+vJ+v
′
J
′

with finite GRnn′ in terms of the renormalized parameters.
The renormalized 1PI function ΓRvv′ is expressed as

ΓRvv′ = −νZνp
2 + + . . .

Leading order Zν = 1 in the graph, in the MS scheme then

Zν = 1 −
(d − 1)S̄d

8(d + 2)

g1

ε
+ . . . , S̄d = 2πd/2/(2π)dΓ(d/2) .
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .

Powerlike df is not renormalized, g1 from connection
between g01 and D01.
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .

Powerlike df is not renormalized, g1 from connection
between g01 and D01.

Bare quantities independent of µ: the homogeneous RG
equation. For the pair correlation function, for instance,

[µ∂µ + β1∂g1
− γνν∂ν ]G = 0 , γν = µ∂µ

∣

∣

0
ln Zν , β1 = µ∂µ

∣

∣

0
g1
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Homogeneous renormalization-group equation

Introduce a scaling parameter µ in the connection between
renormalized and unrenormalized (bare) parameters:

ν0 = νZν , g01 = D01ν
−3
0 = g1µ

2ǫZ−3
ν .

Powerlike df is not renormalized, g1 from connection
between g01 and D01.

Bare quantities independent of µ: the homogeneous RG
equation. For the pair correlation function, for instance,

[µ∂µ + β1∂g1
− γνν∂ν ]G = 0 , γν = µ∂µ

∣

∣

0
ln Zν , β1 = µ∂µ

∣

∣

0
g1

where derivatives taken with bare parameters fixed and
∫

dr exp [i(k · r)] 〈vn(t,x + r)vm(t,x)〉 = Pnm(k)G(k)
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.

Invariant (running) parameters ḡ1(µ/k, g1), ν̄(µ/k, g1): first
integrals of the RG equation, e.g.

µ∂µg1 = β1 , ḡ1(1, g1) = g1 .
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Invariant (running) parameters

RG solution for the velocity correlation function:

G(k) = ν2k2−dR

(

k

µ
, g1,

m

µ

)

= ν̄2k2−dR
(

1, ḡ1,
m

k

)

.

Invariant (running) parameters ḡ1(µ/k, g1), ν̄(µ/k, g1): first
integrals of the RG equation, e.g.

µ∂µg1 = β1 , ḡ1(1, g1) = g1 .

Connection between g1 and ν yields the expression:

β1(g1, ε) = g1 [−2ε + 3γν(g1)] .
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Infrared-stable fixed point

In one-loop approximation in the MS scheme

γν = (d− 1)S̄d g1/4(d + 2), β1 = g1

[

−2ε + 3(d − 1)S̄d g1/4(d + 2)
]

.
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Infrared-stable fixed point

In one-loop approximation in the MS scheme

γν = (d− 1)S̄d g1/4(d + 2), β1 = g1

[

−2ε + 3(d − 1)S̄d g1/4(d + 2)
]

.

From the solution of the RG equation for ḡ1 it follows that
there is a physical (g1 > 0) IR-attractive fixed point for ε > 0:

g1∗ = 8(d + 2)ε / 3(d − 1)S̄d, β(g1∗) = 0, β′(g1∗) = 2ε > 0 .

Renormalization group in stochastic theory of developed turbulence 3 – p. 6/11



Infrared-stable fixed point

In one-loop approximation in the MS scheme

γν = (d− 1)S̄d g1/4(d + 2), β1 = g1

[

−2ε + 3(d − 1)S̄d g1/4(d + 2)
]

.

From the solution of the RG equation for ḡ1 it follows that
there is a physical (g1 > 0) IR-attractive fixed point for ε > 0:

g1∗ = 8(d + 2)ε / 3(d − 1)S̄d, β(g1∗) = 0, β′(g1∗) = 2ε > 0 .

The value of γν at the fixed point is found exactly:

γ∗
ν ≡ γν(g∗) = 2ε/3,

without corrections of order ε2, ε3 etc.
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Critical dimensions at the fixed point of RG

For ε > 0 ∃ an IR-stable fixed point: ḡ1 → g1∗ ∝ ε.
Asymptotics of functions W near this fixed point are
generalized homogeneous functions

W
∣

∣

IR
({λ−∆ωti}, {λ

−1
xi}) = λ

∑

Φ
∆ΦW

∣

∣

IR
({ti}, {xi}) .

Here, ∆ω and ∆Φ are critical dimensions of ω and Φ = {v, v′}.
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For ε > 0 ∃ an IR-stable fixed point: ḡ1 → g1∗ ∝ ε.
Asymptotics of functions W near this fixed point are
generalized homogeneous functions

W
∣

∣

IR
({λ−∆ωti}, {λ

−1
xi}) = λ

∑

Φ
∆ΦW

∣

∣

IR
({ti}, {xi}) .

Here, ∆ω and ∆Φ are critical dimensions of ω and Φ = {v, v′}.
They are all expressed through γ∗

ν ≡ γν(g∗):

∆v = 1 − γ∗
ν , ∆v′ = d − ∆ϕ , ∆ω = 2 − γ∗

ν .

Due to Galilei invariance, basic critical dimensions are exact:

∆v = 1 − 2ε/3 , ∆ω = 2 − 2ε/3 .
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Critical dimensions at the fixed point of RG

For ε > 0 ∃ an IR-stable fixed point: ḡ1 → g1∗ ∝ ε.
Asymptotics of functions W near this fixed point are
generalized homogeneous functions

W
∣

∣

IR
({λ−∆ωti}, {λ

−1
xi}) = λ

∑

Φ
∆ΦW

∣

∣

IR
({ti}, {xi}) .

Here, ∆ω and ∆Φ are critical dimensions of ω and Φ = {v, v′}.
They are all expressed through γ∗

ν ≡ γν(g∗):

∆v = 1 − γ∗
ν , ∆v′ = d − ∆ϕ , ∆ω = 2 − γ∗

ν .

Due to Galilei invariance, basic critical dimensions are exact:

∆v = 1 − 2ε/3 , ∆ω = 2 − 2ε/3 .

Scaling for Green functions with separated arguments!
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Scaling in terms of physical variables

IR fixed point yields large-scale limit (k → 0, u = m/k =const)

G(k) ∼ (D10/g1∗)
2/3 k 2−d−4ε/3R(1, g1∗, u) , R(1, g1∗, u) =

∞
∑

n=1

εnRn(u) .
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Scaling in terms of physical variables

IR fixed point yields large-scale limit (k → 0, u = m/k =const)

G(k) ∼ (D10/g1∗)
2/3 k 2−d−4ε/3R(1, g1∗, u) , R(1, g1∗, u) =

∞
∑

n=1

εnRn(u) .

Translate into traditional variables; trade D10 for the mean
energy injection rate E (2 > ε > 0):

E =
(d − 1)

2(2π)d

∫

dk df (k) ⇒ D10 =
4(2 − ε) Λ2ε−4E

Sd(d − 1)
, Λ = (E/ν3

0)1/4 .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

Yields Kolmogorov scaling, when ε → 2 (IR pumping).
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

Yields Kolmogorov scaling, when ε → 2 (IR pumping).

Freezing of scaling dimensions for ε > 2 [Adzhemyan, Antonov
& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .
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& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .

Yields independence of ν0, Kolmogorov exponents ∀ ε > 2:

G(k) ∼
[
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Freezing of dimensions in the inertial range

Large-scale scaling in terms of E and ν0 for 2 > ε > 0:

G(k) ∼
[

4(2 − ε)/Sd(d − 1)g1∗

]2/3
ν2−ε
0 E

ε/3
k 2−d−4ε/3R(1, g1∗, u) .

Yields Kolmogorov scaling, when ε → 2 (IR pumping).

Freezing of scaling dimensions for ε > 2 [Adzhemyan, Antonov
& Vasil’ev (1989)]: D10 acquires scale dependence through

D10 = 4(ε − 2) m4−2εE/Sd(d − 1) , m = 1/L .

Yields independence of ν0, Kolmogorov exponents ∀ ε > 2:

G(k) ∼
[

4(ε − 2)/Sd(d − 1)g1∗

]2/3
E

2/3
k−d−2/3u4(2−ε)/3R(1, g1∗, u) .

Analysis of the inertial-range limit u = m/k → 0 beyond RG.
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Operator-product expansion

The limit u = m/k → 0 beyond RG. To collect terms ε ln u ∼ 1,
use operator-product expansion for composite operators F :

F1(t,x1)F2(t,x2) =
∑

α

Cα(x1 − x2)Fα [(x1 + x2)/2, t] .

Cα analytic in (mr)2: singularities due to dangerous
operators 〈Fα(x)〉 ∝ m∆Fα with ∆Fα

< 0.
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use operator-product expansion for composite operators F :

F1(t,x1)F2(t,x2) =
∑

α

Cα(x1 − x2)Fα [(x1 + x2)/2, t] .

Cα analytic in (mr)2: singularities due to dangerous
operators 〈Fα(x)〉 ∝ m∆Fα with ∆Fα

< 0.

A composite operator is a (local) product of fields and their
derivatives, e.g. vn, (∇v)2.
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The limit u = m/k → 0 beyond RG. To collect terms ε ln u ∼ 1,
use operator-product expansion for composite operators F :

F1(t,x1)F2(t,x2) =
∑

α

Cα(x1 − x2)Fα [(x1 + x2)/2, t] .

Cα analytic in (mr)2: singularities due to dangerous
operators 〈Fα(x)〉 ∝ m∆Fα with ∆Fα

< 0.

A composite operator is a (local) product of fields and their
derivatives, e.g. vn, (∇v)2.

Composite operators give rise to new divergences: merging
points in coordinate space creates new loop integrals in the
wave-vector space.
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .

Kolmogorov constant CK and 4
5 (at d = 3) law

S2(r) ∼ CK(ε r)2/3 , S3(r) ∼ −
12

d(d + 2)
ε r .
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Kolmogorov scaling of structure functions

Statistical description of the turbulent flow by structure
functions of the velocity field

Sn(r) =
〈[

v‖(t,x + r) − v‖(t,x)
]n〉

, v‖ =
v · r

r
.

Kolmogorov scaling (1941) in the inertial range:

Sn(r) ∝ (εr)n/3 , η ≪ r ≪ L .

Kolmogorov constant CK and 4
5 (at d = 3) law

S2(r) ∼ CK(ε r)2/3 , S3(r) ∼ −
12

d(d + 2)
ε r .

Anomalous scaling: exponents of Sn nonlinear in n.
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Renormalization of composite operators

Renormalization of composite operators on equal footing
with the renormalization of the dynamic action: add terms
corresponding to composite operators and calculate in the
linear order.
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Renormalization of composite operators

Renormalization of composite operators on equal footing
with the renormalization of the dynamic action: add terms
corresponding to composite operators and calculate in the
linear order.

Composite operators mix under renormalization: to obtain
UV-finite correlation functions, sum over renormalized
composite operators in the correlation function to obtain

R(1, g1∗, u) =
∑

F

CF (u)u∆F .
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Renormalization of composite operators

Renormalization of composite operators on equal footing
with the renormalization of the dynamic action: add terms
corresponding to composite operators and calculate in the
linear order.

Composite operators mix under renormalization: to obtain
UV-finite correlation functions, sum over renormalized
composite operators in the correlation function to obtain

R(1, g1∗, u) =
∑

F

CF (u)u∆F .

Dangerous operators not known for 0 < ε < 2: u → 0 safe!
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