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Turbulence: the arts

Figure 1: Miniature painting: Raga Malhar.
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Turbulence: the arts

Figure 2: Eddies: Da Vinci.
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Turbulence: the arts

Figure 3: Giant wave: Hokusai.
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Experiments (fluids, plasmas,
tracers)

Flow visualisation

Energy dissipation

Correlation and structure functions

Probability distributions
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Fluid Turbulence

Figure 4: Wake behind two cylinders (top) and homoge-
neous turbulence behind a grid (bottom).
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Fluid Turbulence

Decaying, homogeneous and isotropic fluid turbulence,
behind a grid

Use hot-wire anemometry to measure the velocity
Reynolds number Re ≡ ℓU/ν
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Osborne Reynolds

Figure 5: Copyright Universty of Manchester
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Jets

Turbulent jet of water without and with 50ppm
polyethylene oxide at Re ∼ 225
[Hoyt (1977)]
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Passive Scalars

Turbulent dispersion of small particles

Mount St. Helens on May 18, 1980.
http://milou.msc.cornell.edu/lay_turb.html
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Vortex filaments
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Some lessons

Large spatial scales: contain most of the energy.

Small scales: Inertial and dissipation ranges.

Small scales: Homogeneous and isotropic, to a good
approximation (far from boundaries, etc.)

Inertial-range correlation (or structure functions) are
universal (reminiscent of critical phenomena).
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Solar turbulence

Figure 6: Turbulence on the sun: From top to bottom,
optical intensity, magnetic field and velocity as measured
by the SOHO project (http://soi.stanford.edu)
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Boundary layers

Figure 7: Turbulent boundary layer near a wall (Re ≃

4000), Falco 1977.
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Convection

Figure 8: Plumes in turbulent convection (Sparrow, et al.,
1970)
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Jets

Figure 9: Instability of an axisymmetric jet (Drubka and
Nagib).
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Vorticity filaments

Figure 10: Images of high concentrations of vorticity in
water seeded with small bubbles for visualisation.
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Vorticity filaments

Figure 11: Iso-vorticity surfaces with superimposed ve-
locity vectors (Sain, et al., 1997) from a 643 simulation.
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Vorticity filaments

Figure 12: Iso-vorticity (cream) and isodissipation (blue)
surfaces (Sain, et al., 1997) from a 643 simulation.
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Vorticity filaments

Figure 13: Iso-vorticity (cream) and isodissipation (blue)
surfaces (Sain, et al., 1997) with lower ω/ωmax and ǫ/ǫmax

ratios than in the previous figure.
Introduction to Turbulence – p. 23



High-performance computing

Figure 14: Model of the Earth Simulator, Japan. This
computer is in a 50m X 65m X 17 m, two-storeyed building.
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Vorticity filaments

Figure 15: Intense-vorticity isosurfaces from a 40963 sim-
ulation on the Earth Simulator (Y. Kaneda, et al., 2003).
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Vorticity filaments

Figure 16: A closer view of the inner square region of the
previous figure.
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Vorticity filaments

Figure 17: A closer view of the inner square region of the
previous figure.
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Vorticity filaments

Figure 18: A closer view of the inner square region of the
previous figure.
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Probabilistic description

Why do we need a probabilistic description of
turbulence (see, e.g., U. Frisch)?

Velocity signals from turbulent flows are disorganised.

They are unpredictable in their detailed behaviour.

Some average properties of the signals are quite
reproducible.
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Wind tunnel

Figure 19: A schematic drawing of the S1 wind tunnel at
ONERA.
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Time series

Figure 20: One-second traces of a signal recorded at the
S1 wind tunnel of ONERA by Gagne and Hofinger.
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Histograms

Figure 21: Construction of the histogram of a signal by
binning.

Introduction to Turbulence – p. 32



Structure functions

Second order, longitudinal structure function:

S2(l) ≡ 〈
(

δv||(l)
)2
〉; (1)

longitudinal velocity increment:

δv||(r, ℓ) ≡ [v(r + ℓ) − v(r)] .
ℓ

ℓ
. (2)

Instead of a two-point measurement one often uses the
Taylor hypothesis to convert temporal separations to
spatial ones.
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Taylor hypothesis

If U is the mean flow in the x direction

v(t, x) = v′ (t, x − Ut) + U (3)

Measure turbulence intensity by

I =

√

〈v′2〉

U
≪ 1. (4)

Relate temporal separations τ to lengths ℓ by

ℓ = Uτ (5)
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Reynolds number

Rλ ≡
vrmsλ

v
(6)

Taylor-microscale:

1

λ2
≡

〈(δ1v1)
2〉

v2
rms

. (7)
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Reynolds number

Root-mean-square velocity:

vrms = (2E/3)1/2 〈(∂1v1)
2〉 = (2/15)Ω (8)

E: mean energy; Ω : mean enstrophy.

1

λ2
=

Ω

5E ′
(9)
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Structure functions

Order-p, equal-time, longitudinal velocity structure function:

Sp(l) ≡ 〈δv(l, t)p〉,

δv(l, t) ≡ [~v(~r +~l, t) − ~v(~r, t)] · (~l/l), (10)

then for l in the inertial range we have

Sp(l) ∼ lζp . (11)

~v(~r): Eulerian velocity at the point ~r;
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Inertial range

inertial range: etad ≪ l ≪ L; L : length scale at which
energy is pumped into the fluid; ηd: the spatial scale at

which dissipative losses become significant
〈〉:average over the nonequilibrium statistical steady state
that obtains in the turbulent fluid.
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Multiscaling

The power law of Eq. (11) is reminiscent of the behaviour
of correlation functions in critical phenomena

But simple scaling must be replaced by multiscaling, i.e.,

ζp is a nonlinear, convex function of p
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Multiscaling

For example, in the She-Leveque formula

ζSL
p = (p/9) + 2[1 − (2/3)p/3], (12)

which provides a good parametrization of experimental
and numerical data for the multiscaling exponents ζp.
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K41 scaling

Scaling in Fluid Turbulence Kolmogorov 1941 (K41)

Figure 22: A.N. Kolmogorov
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K41 scaling

Turbulence is homogeneous and isotropic far away from
boundaries and statistically steady.

Energy is pumped in at lengths ∼ L and dissipation is
significant only for lengths . ηd.

In the inertial range , ηd ≪ l ≪ L, all statistical quantities
are independent of both the forcing term and the viscosity.
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K41 scaling

Energy cascades (Richardson) down the inertial range till it
is dissipated in the dissipation range.

Thus Sp(l) can depend only on l and the rate of energy
dissipation per unit volume per unit mass ǫ, which
approaches a positive, constant value at large Re in three
dimensions (zeroth law of turbulence).

Dimensional analysis now leads to Sp(l) ∼ (ǫl)p/3 whence

ζK41
p = p/3. (13)
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K41 scaling

Experiments and direct numerical simulations (DNS)
indicate that the K41 scaling result does not hold and
multiscaling deviations from it are particularly apparent for
p > 3.

The energy spectrum E(k) ∼ k2|v(k)|2 scales as k−5/3 at
the level of K41.
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Richardson cascade
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Figure 23: A schematic illustration of the Richardson cas-
cade.
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Zeroth law

Figure 24: Illustration of the zeroth law of turbulence (fig-
ure from Kaneda, et al. (2003)).
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Zeroth law

Figure 25: Typical signals of a representative of the local
dissipation illustrating the intermittency of energy dissipa-
tion. Data are from (a) a laboratory boundary layer and (b)
the atmospheric surface layer (Meneveau and Sreenivasan,
1991).
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PDFs

Figure 26: PDFs of velocity differences for r in the iner-
tial range from (a) wind-tunnel and (b) atmospheric surface
layers (Praskovsky and Oncley).
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Structure functions

Figure 27: log-log plot of the second=order sructure func-
tion in the time domain for data from the S1 wind tunnel of
ONERA (Gagne and Hopfinger).
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Structure functions

Figure 28: Second-order structure function in the space
doamin by the RELIEF technique (Noullez, et al., 1996).
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Energy spectrum

Figure 29: Energy spectrum in the time domain for data
from the S1 wind tunnel of ONERA at Reλ = 2720 (Gagne
and Hopfinger).
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Energy spectrum

Figure 30: Energy spectrum in the time domain and en-
largement showing the beginning of the dissipation range
for a tidal channel (Grant, et al., (1962).)
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Energy spectra

Figure 31: Log-log plot of the energy spectra in the time
domain in a jet for streamwise (open circles) and lateral
components (black circles) (Champagne 1978).
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Energy spectrum

Figure 32: Log-log plot of the energy spectrum (time
domain) in a low-temperature helium-gas flow between
counter-rotating cylinders (Reλ = 1200) (Maurer, et al.,
1994).

Introduction to Turbulence – p. 54



Energy spectrum

Figure 33: Energy spectra in the space domain from a
2563 simulation (T. Sanada and K. Ishii).
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Statistical steady state

Figure 34: Reλ versus time t (figure from Kaneda, et al.
(2003)).
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Statistical steady state

Figure 35: Dimensionless dissipation versus time t (figure
from Kaneda, et al. (2003)).
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Energy spectrum

Figure 36: The energy spectrum versus k (figure from
Kaneda, et al. (2003)).
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Structure functions

Figure 37: Structure functions of orders 2, 3, and 6 in the
time domain, compensated by the guesses for the power-
law factors for data from the S1 wind tunnel at ONERA
(Gagne, 1987).
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Structure functions

Figure 38: Structure functions of order 2, 3, 4, and 6 in
the time domain for a low-temperature helium gas (Maurer,
et al., 1994).
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Multiscaling

Figure 39: Exponents ζp versus order p: data from several
experiments (see U. Frisch’s book) and curves from differ-
ent models used to fit such data.
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Multiscaling

Partial Differential Equations (PDEs): Euler,
Navier-Stokes, MHD, Burgers, Passive-Scalar, and
BMHD equations.

Collections of Ordinary Differential Equations (ODEs):
Shell Models for fluid and MHD turbulence (e.g., GOY,
SABRA, and their MHD analogues).
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Euler Equation

Newton’s second law of motion yields the Euler equation:

∂u

∂t
+ u.∇u = −

1

ρ
∇p + f/ρ, (14)

u:fluid velocity; p:pressure; ρ:fluid mass density; f :external
force.
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Euler

Figure 40: Leonhard Euler (1707-1783)
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Incompressibility

Continuity Equation ∂ρ
∂t

+ ∇ · (ρu) = 0

For an incompressible fluid this is replaced by the condition
∇ · u = 0.
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Navier and Stokes

Claude-Louis Navier (1785-1836) and George Gabriel
Stokes (1819-1903).
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Navier-Stokes Equation

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p

+ η∇2
u + (ζ +

1

3
η)∇(∇ · u) + f .

ν: shear viscosity; ζ: bulk viscosity.
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Navier-Stokes Equation

For an incompressible fluid

∇ · u = 0, (15)

so the bulk-viscosity part does not appear in the NS
equation; the pressure is determined by

∇2p = −ρ∇ · (u.∇u). (16)

This is valid at low Mach numbers, i.e., if typical velocitie s are
much less than the speed of sound in the fluid.
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Incompressibility

Incompressibility leads to:

∂tu + (u · ∇)u =

ν ∇2
u −∇p/ρ + f/ρ,

with
∇ · u = 0;
ν = η/ρ
the kinematic viscosity.
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Shell Models

Simple ODE models for fluid or other (e.g., MHD)
turbulence.
Essential ingredients of such shell models:

Concentrate on the one-dimensional cascade of
energy from low to high wavevectors.

Label Fourier components of the velocities by a
discrete set of logarithmically spaced wave vectors
kn = k0λ

n.
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Shell Models

The dynamical variables are the complex, scalar
velocities vn for each shell n.

The velocity in a given shell is affected directly only by
those in nearest- and next-nearest-neighbour shells.

The system is forced at small wave vectors.

Dissipation occurs principally at large wave vectors.

Thus energy cascades from small to large wave
vectors.
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Shell Models

Advantages:

Since they are much simpler than the Navier-Stokes
equation, they can be studied in much greater detail;
very large values of Reλ and hence larger inertial
ranges can be obtained.

They yield multiscaling and multiscaling exponents
akin to those seen in experiments.
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Shell Models

A shell model can be viewed as a greatly simplified,
quasi-Lagrangian version of the Navier-Stokes
equation since they do not have a direct sweeping
effect (see below).
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Shell Models

Disadvantages:

Since the wave vectors and velocities are scalars,
strictly speaking they have no vorticity or coherent
structures.

Since the velocity in a given shell is affected directly
only by those in nearest- and next-nearest-neighbour
shells, they do not have the analogue of the sweeping
effect present in the Navier-Stokes equation.
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Shell Models

That is large eddies (i.e., vn with small n) cannot drive,
directly, small eddies (i.e., vn with large n).

Even though these models are much simpler than the
Navier-Stokes equation, they have to be studied
numerically.
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GOY Shell Model

d
dt

vn = iCn − νk2
nvn + fn, with

Cn =
(

aknvn+1vn+2

+ bkn−1vn−1vn+1 + ckn−2vn−1vn−2

)∗
;
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GOY Shell Model

a, b, and c can be fixed upto a constant by demanding that
these equations satisfy all the conservation laws
(analogues of energy and helicity) in the unforced, inviscid
limit.
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Burgers Equation

Simplest form: A one-dimensional model (not
incompressible) with no pressure term.

Galilean invariant.

Preserves the analogue of the kinetic energy in the
unforced, inviscid limit.
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Burgers Equation

Applications in cosmology, condensed-matter physics;
can be used as a testing ground for ideas about
turbulence.

Can be linearised by the Hopf-Cole transformation but
can still show interesting bifractal scaling.
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Burgers Equation

∂v

∂t
+

1

2

∂

∂x
v2 = ν

∂2v

∂x2
+ f.
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Polymeric Turbulence

Navier-Stokes and FENE-P equations
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Polymeric Turbulence

Navier-Stokes(NS) with Polymer Additives:

3D, unforced, incompressible, NS with dilute polymer
solution

∂u

∂t
+ (u · ∇)u = −∇p + ν∇2

u + ∇ · T ,

where
u(x, t): fluid velocity; point x; time t;
ν: Kinematic viscosity of the fluid;
T : polymer contribution to the fluid stress;

∇ · u = 0 enforces incompressibility.
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Polymeric Turbulence

FENE-P Shell Model

Kalelkar et.al.(2005), Benzi et.al.(2003):

dun

dt
= Φn,uu − νsk

2
nun +

νp

τp(1 −
∑

n |bn|2)
Φn,bb,

dbn

dt
= Φn,ub − Φn,bu −

1

τp(1 −
∑

n |bn|2)
bn

where un and bn are complex, scalar variables
representing the velocity and the (normalized) polymer
end-to-end vector fields, kn = k02

n are the discrete
wavenumbers for the shell index N

Polymer concentration c ≡ νp/νs
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Polymeric Turbulence

Φn,vv = i(a1knvn+1vn+2 + a2kn−1vn+1vn−1+
a3kn−2vn−1vn−2)]

Φn,bb = −i(a1knbn+1bn+2 + a2kn−1bn+1bn−1+
a3kn−2bn−1bn−2)

Φn,vb = i(a4knvn+1bn+2 + a5kn−1vn−1bn+1+
a6kn−2vn−1bn−2)

Φn,bv = −i(a4knbn+1vn+2 + a5kn−1bn−1vn+1+
a6kn−2bn−1vn−2)
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Magnetohydrodynamics

Navier-Stokes equation and the Lorentz force.
Faraday’s law and Ohm’s law.
Often use incompressibility though for many physical
situations this may not hold, e.g., in the solar wind and on
the sun’s surface.
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Magnetohydrodynamics

∂t~v + (~v · ∇)~v = νv∇
2~v

−∇(p + b2/2)/ρ + (~b · ∇)~b + ~fv/ρ,

∂t
~b = ∇× (~v ×~b)

+ νb∇
2~b + ~fb,
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Magnetohydrodynamics

with ~b the magnetic field, νv and νb the fluid and magnetic
kinematic viscosities and ~fv and ~fb the forcing terms in the
velocity and magnetic-field equations.
Furthermore

∇ · ~v = 0;

∇ ·~b = 0.
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Magnetohydrodynamics

It is often convenient to use the Els ässer variables
~z± ≡ ~v ±~b.

If we have a mean magnetic field ~B0, then, in the MHD

equations, ~b → ~B0 +~b(r, t).

If ~B0 6= 0 we get Alfven waves with a frequency that depends

linearly on | ~B0|.
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Magnetohydrodynamics

Our Shell Model for 3DMHD Turbulence

dz±n
dt

= ic±n − ν+k2
nz±n

− ν−k2
nz±n + f±

n ,

with z±n ≡ (vn ± bn) complex, scalar Els ässer variables and
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Magnetohydrodynamics

c±n = [a1knz
∓
n+1z

±
n+2

+ a2knz±n+1z
∓
n+2

+ a3kn−1z
∓
n−1z

±
n+1

+ a4kn−1z
±
n−1z

∓
n+1

+ a5kn−2z
∓
n−1z

±
n−2

+ a6kn−2z
∓
n−1z

±
n−2]

∗.
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Magnetohydrodynamics

Burgers Model Analogue of MHD

∂v

∂t
+ Bo

∂b

∂x
+

1

2

∂

∂x
v2

+
1

2

∂

∂x
b2 = ν

∂2

∂x2
v + f1;

(17)
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Magnetohydrodynamics

∂b

∂t
+ Bo

∂v

∂x

+
∂

∂x
(vb) = µ

∂2

∂x2
b + f2.
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Passive Scalars

The Passive-Scalar Equation

∂θ

∂t
+ ~v · ∇θ

= κ∇2θ + f(r, t),
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Passive Scalars

with θ(r, t) the passive scalar field, ~v(r, t) the turbulent
velocity field that drives the passive scalar, and f(r, t) the
external force.
In some cases a stochastic velocity field is used as an
input (Gawedzki, et al., RMP (2001)).
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Calculations

Types of Calculations

Rigorous results on existence, etc., of solutions.

Linear (or more sophisticated) stability analysis about
simple flows.

Renormalized perturbation theory for stochastically
forced models.
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Calculations

Closures, e.g., the direct interaction approximation
(DIA).

Numerical studies, either direct numerical simulation
(DNS) or various levels of turbulence modelling, e.g.,
k − ǫ and large-eddy smulations (LES).

We will concentrate on DNS here.
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Boundary Conditions

The normal component of the velocity must vanish at
the boundary (both for the Euler and the Navier-Stokes
equations).

For the Navier-Stokes equation the tangential
component of the velocity is also controlled; for rigid
boundaries we typically use the no slip condition in
which the fluid, at the boundary, has a tangential
velocity equal to that of the boundary.
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Boundary Conditions

The pressure also has to satisfy the boundary
condition n̂ · ∇p|∂Ω = ρ[νn̂ · ∇2~u]|∂Ω.

For studies of homogeneous, isotropic turbulence it is
advantageous to use periodic boundary conditions for
the pressure and all components of the velocity (and
magnetic field).
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Further Background

Refs.: U. Frisch, Turbulence (Cambridge, 1996); S.B.
Pope, Turbulent Flows (Cambridge, 2000); C.R.
Doering and J.D. Gibbon, Applied Analysis of the
Navier-Stokes Equations (Cambridge, 1995).

Symmetries, e.g., for the Navier-Stokes equation under
space and/or time translations, Galilean
transformations (for infinite systems or with periodic
boundary conditions), parity, rotations, and scaling.
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Further Background

Conservation laws in the unforced, inviscid limits (e.g.,
for the Navier-Stokes equation, conservation of
momentum, energy, and helicity).

The generalization of the above conservation laws to
balance equations in the presence of forcing and
dissipation.

Eulerian and Lagrangian descriptions.
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Further Background

Dimensionless Control Parameters

Navier-Stokes: Reynolds number (if vrms is held fixed)
or the Grashof number (if the force is held fixed).

MHD: Fluid and magnetic Reynolds numbers and the
magnetic Prandtl number (the ratio of fluid and
magnetic viscosities).
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Further Background

Mathematical Issues

Existence and smoothness of the solutions of the
Navier-Stokes and Euler equations. Similar questions
arise for all the equations mentioned above.

Roughly speaking, the question is whether the
solutions develop singularities, in finite time, for
arbitrary (or analytic) initial data.

For a precise statement see the web site of the Clay
Mathematics Institute.
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Further Background

Physicists’ Perspective

Even if there is some problem with the existence and
smoothness of the solutions of the Navier-Stokes, we
will not have to worry too much about it since
higher-order derivatives (neglected at the
Navier-Stokes level) will control it.
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