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Models

Partial Differential Equations (PDEs): Euler,
Navier-Stokes, MHD, Burgers, Passive-Scalar, and
BMHD equations.

Collections of Ordinary Differential Equations (ODEs):
Shell Models for fluid and MHD turbulence (e.g., GOY,
SABRA, and their MHD analogues).
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Euler Equation

Newton’s second law of motion yields the Euler equation:

∂u

∂t
+ u.∇u = −

1

ρ
∇p+ f/ρ, (1)

u:fluid velocity; p:pressure; ρ:fluid mass density; f :external
force.

Introduction to Turbulence II – p. 3



Euler

Figure 1: Leonhard Euler (1707-1783)
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Incompressibility

Continuity Equation ∂ρ
∂t

+ ∇ · (ρu) = 0

For an incompressible fluid this is replaced by the condition
∇ · u = 0.
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Navier and Stokes

Claude-Louis Navier (1785-1836) and George Gabriel
Stokes (1819-1903).
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Navier-Stokes Equation

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p

+ η∇2
u + (ζ +

1

3
η)∇(∇ · u) + f .

ν: shear viscosity; ζ: bulk viscosity.
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Navier-Stokes Equation

For an incompressible fluid

∇ · u = 0, (2)

so the bulk-viscosity part does not appear in the NS
equation; the pressure is determined by

∇2p = −ρ∇ · (u.∇u). (3)

This is valid at low Mach numbers, i.e., if typical velocitie s are
much less than the speed of sound in the fluid.
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Incompressibility

Incompressibility leads to:

∂tu + (u · ∇)u =

ν ∇2
u −∇p/ρ+ f/ρ,

with
∇ · u = 0;
ν = η/ρ
the kinematic viscosity.
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Shell Models

Simple ODE models for fluid or other (e.g., MHD)
turbulence.
Essential ingredients of such shell models:

Concentrate on the one-dimensional cascade of
energy from low to high wavevectors.

Label Fourier components of the velocities by a
discrete set of logarithmically spaced wave vectors
kn = k0λ

n.
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Shell Models

The dynamical variables are the complex, scalar
velocities vn for each shell n.

The velocity in a given shell is affected directly only by
those in nearest- and next-nearest-neighbour shells.

The system is forced at small wave vectors.

Dissipation occurs principally at large wave vectors.

Thus energy cascades from small to large wave
vectors.
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Shell Models

Advantages:

Since they are much simpler than the Navier-Stokes
equation, they can be studied in much greater detail;
very large values of Reλ and hence larger inertial
ranges can be obtained.

They yield multiscaling and multiscaling exponents
akin to those seen in experiments.
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Shell Models

A shell model can be viewed as a greatly simplified,
quasi-Lagrangian version of the Navier-Stokes
equation since they do not have a direct sweeping
effect (see below).
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Shell Models

Disadvantages:

Since the wave vectors and velocities are scalars,
strictly speaking they have no vorticity or coherent
structures.

Since the velocity in a given shell is affected directly
only by those in nearest- and next-nearest-neighbour
shells, they do not have the analogue of the sweeping
effect present in the Navier-Stokes equation.
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Shell Models

That is large eddies (i.e., vn with small n) cannot drive,
directly, small eddies (i.e., vn with large n).

Even though these models are much simpler than the
Navier-Stokes equation, they have to be studied
numerically.
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GOY Shell Model

d
dt
vn = iCn − νk2

nvn + fn, with

Cn =
(

aknvn+1vn+2

+ bkn−1vn−1vn+1 + ckn−2vn−1vn−2

)∗
;
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GOY Shell Model

a, b, and c can be fixed upto a constant by demanding that
these equations satisfy all the conservation laws
(analogues of energy and helicity) in the unforced, inviscid
limit.
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Burgers Equation

Simplest form: A one-dimensional model (not
incompressible) with no pressure term.

Galilean invariant.

Preserves the analogue of the kinetic energy in the
unforced, inviscid limit.
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Burgers Equation

Applications in cosmology, condensed-matter physics;
can be used as a testing ground for ideas about
turbulence.

Can be linearised by the Hopf-Cole transformation but
can still show interesting bifractal scaling.
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Burgers Equation

∂v

∂t
+

1

2

∂

∂x
v2 = ν

∂2v

∂x2
+ f.
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Polymeric Turbulence

Navier-Stokes and FENE-P equations
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Polymeric Turbulence

Navier-Stokes(NS) with Polymer Additives:

3D, unforced, incompressible, NS with dilute polymer
solution

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2

u + ∇ · T ,

where
u(x, t): fluid velocity; point x; time t;
ν: Kinematic viscosity of the fluid;
T : polymer contribution to the fluid stress;

∇ · u = 0 enforces incompressibility.
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Polymeric Turbulence

FENE-P Shell Model

Kalelkar et.al.(2005), Benzi et.al.(2003):

dun

dt
= Φn,uu − νsk

2
nun +

νp

τp(1 −
∑

n |bn|
2)

Φn,bb,

dbn
dt

= Φn,ub − Φn,bu −
1

τp(1 −
∑

n |bn|
2)
bn

where un and bn are complex, scalar variables
representing the velocity and the (normalized) polymer
end-to-end vector fields, kn = k02

n are the discrete
wavenumbers for the shell index N

Polymer concentration c ≡ νp/νs
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Polymeric Turbulence

Φn,vv = i(a1knvn+1vn+2 + a2kn−1vn+1vn−1+
a3kn−2vn−1vn−2)]

Φn,bb = −i(a1knbn+1bn+2 + a2kn−1bn+1bn−1+
a3kn−2bn−1bn−2)

Φn,vb = i(a4knvn+1bn+2 + a5kn−1vn−1bn+1+
a6kn−2vn−1bn−2)

Φn,bv = −i(a4knbn+1vn+2 + a5kn−1bn−1vn+1+
a6kn−2bn−1vn−2)
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Magnetohydrodynamics

Navier-Stokes equation and the Lorentz force.
Faraday’s law and Ohm’s law.
Often use incompressibility though for many physical
situations this may not hold, e.g., in the solar wind and on
the sun’s surface.
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Magnetohydrodynamics

∂t~v + (~v · ∇)~v = νv∇
2~v

−∇(p + b2/2)/ρ+ (~b · ∇)~b+ ~fv/ρ,

∂t
~b = ∇× (~v ×~b)

+ νb∇
2~b+ ~fb,
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Magnetohydrodynamics

with ~b the magnetic field, νv and νb the fluid and magnetic
kinematic viscosities and ~fv and ~fb the forcing terms in the
velocity and magnetic-field equations.
Furthermore

∇ · ~v = 0;

∇ ·~b = 0.
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Magnetohydrodynamics

It is often convenient to use the Els ässer variables
~z± ≡ ~v ±~b.

If we have a mean magnetic field ~B0, then, in the MHD

equations, ~b→ ~B0 +~b(r, t).

If ~B0 6= 0 we get Alfven waves with a frequency that depends

linearly on | ~B0|.
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Magnetohydrodynamics

Our Shell Model for 3DMHD Turbulence

dz±n
dt

= ic±n − ν+k
2
nz

±
n

− ν−k
2
nz

±
n + f±

n ,

with z±n ≡ (vn ± bn) complex, scalar Els ässer variables and
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Magnetohydrodynamics

c±n = [a1knz
∓
n+1z

±
n+2

+ a2knz
±
n+1z

∓
n+2

+ a3kn−1z
∓
n−1z

±
n+1

+ a4kn−1z
±
n−1z

∓
n+1

+ a5kn−2z
∓
n−1z

±
n−2

+ a6kn−2z
∓
n−1z

±
n−2]

∗.

Introduction to Turbulence II – p. 30



Passive Scalars

The Passive-Scalar Equation

∂θ

∂t
+ ~v · ∇θ

= κ∇2θ + f(r, t),
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Passive Scalars

with θ(r, t) the passive scalar field, ~v(r, t) the turbulent
velocity field that drives the passive scalar, and f(r, t) the
external force.
In some cases a stochastic velocity field is used as an
input (Gawedzki, et al., RMP (2001)).
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2D Navier-Stokes

Use the stream-function ψ and vorticity ω formulation.

The velocity u is a function of x and y co-ordinates
only.

The vorticity, which is a pseudo-scalar, is defined as

ω ≡ ∇× u. (4)
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2D Navier-Stokes

The incompressibility constraint,

∂xux + ∂yuy = 0 (5)

ensures that the velocity is uniquely determined by the
stream-function, ψ, as

u ≡ (−∂yψ, ∂xψ). (6)
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2D Navier-Stokes

The Navier-Stokes equation :

∂tω − J(ψ, ω) = ν∇2ω + f (7)

∇2ψ = ω, (8)

where
J(ψ, ω) ≡ (∂xψ)(∂yω) − (∂xω)(∂yψ). (9)

The source function f is the ẑ component of the curl of
some force ∇× F.
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2D Navier-Stokes

We can also write the Navier-Stokes equation in the
following equivalent form :

ψ̂ = −
1

k2
ω̂; (10)

∂tω + ∂x(uxω) + ∂y(uyω) = ν∇2ω + f, (11)

where ux and uy are respectively the x and y component of
the velocity vector u. f is the source function or the forcing.
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2D MHD

The MHD equations in 2D are given by

∂tω + v.∇ω − b.∇j = ν∇2ω; (12)

∂tψ + v.∇ψ = η∇2ψ. (13)

where the flux function ψ is related to the current density j
via

j = ∇2ψ (14)
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Calculations

Types of Calculations

Rigorous results on existence, etc., of solutions.

Linear (or more sophisticated) stability analysis about
simple flows.

Renormalized perturbation theory for stochastically
forced models.
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Calculations

Closures, e.g., the direct interaction approximation
(DIA).

Numerical studies, either direct numerical simulation
(DNS) or various levels of turbulence modelling, e.g.,
k − ǫ and large-eddy smulations (LES).

We will concentrate on DNS here.
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Boundary Conditions

The normal component of the velocity must vanish at
the boundary (both for the Euler and the Navier-Stokes
equations).

For the Navier-Stokes equation the tangential
component of the velocity is also controlled; for rigid
boundaries we typically use the no slip condition in
which the fluid, at the boundary, has a tangential
velocity equal to that of the boundary.
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Boundary Conditions

The pressure also has to satisfy the boundary
condition n̂ · ∇p|∂Ω = ρ[νn̂ · ∇2~u]|∂Ω.

For studies of homogeneous, isotropic turbulence it is
advantageous to use periodic boundary conditions for
the pressure and all components of the velocity (and
magnetic field).
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Further Background

Refs.: U. Frisch, Turbulence (Cambridge, 1996); S.B.
Pope, Turbulent Flows (Cambridge, 2000); C.R.
Doering and J.D. Gibbon, Applied Analysis of the
Navier-Stokes Equations (Cambridge, 1995).

Symmetries, e.g., for the Navier-Stokes equation under
space and/or time translations, Galilean
transformations (for infinite systems or with periodic
boundary conditions), parity, rotations, and scaling.
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Further Background

Conservation laws in the unforced, inviscid limits (e.g.,
for the Navier-Stokes equation, conservation of
momentum, energy, and helicity).

The generalization of the above conservation laws to
balance equations in the presence of forcing and
dissipation.

Eulerian and Lagrangian descriptions.
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Further Background

Dimensionless Control Parameters

Navier-Stokes: Reynolds number (if vrms is held fixed)
or the Grashof number (if the force is held fixed).

MHD: Fluid and magnetic Reynolds numbers and the
magnetic Prandtl number (the ratio of fluid and
magnetic viscosities).
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Further Background

Mathematical Issues

Existence and smoothness of the solutions of the
Navier-Stokes and Euler equations. Similar questions
arise for all the equations mentioned above.

Roughly speaking, the question is whether the
solutions develop singularities, in finite time, for
arbitrary (or analytic) initial data.

For a precise statement see the web site of the Clay
Mathematics Institute.
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Further Background

Physicists’ Perspective

Even if there is some problem with the existence and
smoothness of the solutions of the Navier-Stokes, we
will not have to worry too much about it since
higher-order derivatives (neglected at the
Navier-Stokes level) will control it.
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Multifractals

Recall K41

As Re→ ∞, all possible symmetries of the NS
equation, normally broken by the means of producing
the turbulent flow, are restored in a statistical sense at
small scales and far away from boundaries.

In terms of velocity increments

δv(r + ρ, l)
law
= δv(r, l),

where equality in law denotes that the random
functions on both sides of the equation have the same
statistical properties (moments, PDFs, etc.) for any ρ.

Introduction to Turbulence II – p. 47



Multifractals

Under the assumption on the previous slide, the turbulent
flow is self similar at small scales, i.e., it possesses a
unique, real, scaling exponent h

δv(r, λl)
law
= λhδv(r, l), (15)

where λ is real, and the equality in law holds for for all r
and all l and λl smaller in magnitude than the integral
scale.
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Multifractals

In particular, the order-p velocity structure function
must scale as lph, thus, at the K41 level, h = 1/3.

Under the assumption on the previous slide, the
turbulent flow has a finite, nonvanishing mean rate of
dissipation ǫ per unit mass.

Here we must keep the integral scale l0 and the r.m.s.
velocity fluctuations v0 fixed and let ν → 0; otherwise
use ǫ/(v3

0/l0).
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4/5 Law

Kolmogorov’s 4/5 law As Re→ ∞, the third-order
(longitudinal) structure function is

〈
(

δv||(r, l)
)3
〉 = −

4

5
ǫl, (16)

for l smaller in magnitude than the integral scale.
Important, exact and nontrivial result.

Introduction to Turbulence II – p. 50



Kármán-Howarth-Monin (KHM)

Define first

ǫ(l) ≡ −∂t
1

2
〈v(r) · v(r + l)〉|NL, (17)

where ∂t(·)|NL denotes the time rate of change from the
nonlinear terms (advection and pressure) in the NS equation .
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KHM

Homogeneous (but not necessarily isotropic) solutions of
the NS equation satisfy

ǫ(l) = −
1

4
∇l · 〈|δv(l)|2δv(l)〉 (18)

= −∂t
1

2
〈v(r).v(r + l)〉

+ 〈v(r) ·
f(r + l) + f(r− l)

2
〉

+ ν∇2
l
〈v(r) · v(r + l)〉,
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KHM

where ∇l denotes partial derivatives with respect to l and

〈|δv(l)|2δv(l)〉 ≡ 〈|δv(r, l)|2δv(r, l)〉.

If we hold ν > 0 fixed and let l → 0, the LHS of KHM → 0
(velocity increments vary linearly for very small l), so
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KHM

∂t
1

2
〈v2〉 = 〈f(r) · v(r)〉

+ ν〈v(r) · ∇2
v(r)〉,

i.e., the only change in the mean energy comes from the
force input and the viscous dissipation.

Introduction to Turbulence II – p. 54



KHM

Scale-by-scale energy budget equation

− ∂tEK + ΠK = −2νΩK + FK , (19)

where we define the cumulative energy, enstrophy, and energy
injectionbetween wavenumbers 0 and K as follows:
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Definitions

EK =
1

2

∑

k≤K

|vk|
2; (20)

ΩK =
1

2

∑

k≤K

k2|vk|
2; (21)

FK =
∑

k≤K

fk · vk; (22)
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Definitions

and we define the energy flux through the wavenumber K as
follows:

ΠK ≡ 〈v<
K
· (v<

K
· ∇v

>
K

)〉

+ 〈v<
K
· (v>

K
· ∇v

>
K

)〉,

Introduction to Turbulence II – p. 57



Definitions

where

v
<
K

(r) =

∫

|k|≤K

d
3
k e

ik·r
vk. (23)

Note that

ΠK = −∂tEK |NL. (24)
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KHM

For homogeneous turbulence:

ΠK = −
1

8π2

∫

R3

d3l
sin(Kl)

l

∇l ·

[

l

l2
∇l · 〈|δv(l)|2δv(l)〉

]

.
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KHM

For homogeneous and isotropic turbulence:

ΠK = −
1

6π

∫ ∞

0

dl
sin(Kl)

l

(1 + l∂l)(3 + l∂l)

(5 + l∂l)
S3(l)

l
.
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KHM

For fully developed turbulence in which a statistical steady
state has been established by forcing at small
wavenumbers ≪ Kc

lim
ν→0

ΠK = ǫ,

for all K ≫ Kc, whence
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KHM

ΠK = −

∫ ∞

0

dx
sin x

x
F

( x

K

)

= ǫ, ∀K ≫ Kc,

where

F (l) ≡ (1 + l∂l)(3 + l∂l)

(5 + l∂l)
S3(l)

6πl
.

Introduction to Turbulence II – p. 62



KHM

The large-K behaviour of the integral for ΠK involves the
small-l behaviour of F (l) and since

∫ ∞

0
dx(sinx/x) = π/2

F (l) ≈ −
2

π
ǫ, (25)
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KHM

which, when substituted in the expression for F (l) yields a
third-order, linear ODE for S3(l) whose solution is

S3(l) = −
4

5
ǫl, (26)

the 4/5 law which immediately implies

h = 1/3;

ζ3 = 1.
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Other K41 results

Kolmogorov dissipation scale:

ηd =

(

ν3

ǫ

)1/4

;

Kd =

(

ν3

ǫ

)−1/4

.

(27)

Energy spectrum

E(k) = ǫ2/3k−5/3C(ηdk), (28)

with C a suitable scaling function. Introduction to Turbulence II – p. 65



Other K41 results

Taylor-microscale Reynolds number Reλ ∼ Re1/2,
where Re is the integral-scale Reynolds number.

The ratio of the integral and dissipation scales is
l0/ηd ∼ Re3/4.

Hence for numerical simulations on a uniform grid, the
minimum number of grid points per (integral scale)3 is
N ∼ Re9/4.
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Intermittency

Recall the intermittency in the plots of the energy
dissipation rate per unit mass.

Recall also the deviations of ζp from the K41 prediction
for p > 3.

Conclude, therefore, that it is plausible, though not
entirely certain, that there are intermittency corrections
to K41.
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Intermittency

Self-similar and intermittent random functions

Recall that K41 assumes the self-similarity of the
velocity field at inertial-range scales.

This may well be broken to yield an intermittent velocity
field.
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Intermittency

High-pass filtered function:

v(t) =
∫

dωeiωtvω,

v>
Ω (t) =

∫

ω>Ω
dωeiωtvω

(29)
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Intermittency

If the flatness F (Ω) grows without bound with the filter
frequency Ω, then the random function is intermittent.

F (Ω) =
〈(v<

Ω (t))4〉

〈(v>
Ω (t))2〉2

. (30)
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Intermittency

Consider a random, but stationary, function and the
function obtained from it by setting it to zero a fraction
(1 − γ) of the total time. Then

〈v2
γ〉 = γ〈v2〉, 〈v4

γ〉 = γ〈v4〉, (31)

whence

Fγ =
〈v4

γ〉

〈v2
γ〉

2
=

1

γ

〈v4〉

〈v2〉2
. (32)
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Intermittency

A Gaussian signal is not intermittent since F (Ω) = 3,
independent of Ω.

A random function with self-similar increments and
scaling exponent h is such that, for any λ > 0,

v>
λΩ

law
= λ−hv>

Ω . (33)

Thus, if Ω → λΩ, F (Ω) is unchanged since both
numerator and denominator scale as λ−4h.
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Intermittency

Intermittency can also be measured by higher-order
moments like the hyperflatness (we revert to the
structure functions of turbulence):

F6(l) =
S6(l)

(S2(l))
3 , (34)

which grows as a power as l → 0 (while staying in the
inertial range).
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Intermittency

µ ≡ 2 − ζ6, (35)

which measures the deviation from ζK41
6 , can be

interpreted in some models of intermittency as the
codimension (3 minus the dimension) of dissipative
structures.
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Exact results on intermittency

Assumptions

For Re = (l0v0/ν) → ∞

〈
(

δv||(l)
)2p

〉

v2p
0

≃ A2p

(

l

l0

)ζ2p

, (36)

where A2p is a positive numerical constant that is not
necessarily universal.
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Exact results on intermittency

For finite Re the above scaling holds over inertial-range
scales, the size of which increases with Re at least as
a power law:

1 ≫
l

l0
≫ (Re)−α, α > 0. (37)
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Exact results on intermittency

Three propositions on intermittency

For any three positive integers p1 ≤ p2 ≤ p3, we have
the convexity inequality

(p3 − p1)ζ2p2 ≥

(p3 − p2)ζ2p1 + (p2 − p1)ζ2p3.
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Exact results on intermittency

Under the first assumption, if there exist two
consecutive even numbers 2p and 2p+ 2, such that,

ζ2p > ζ2p+2, (38)

then the velocity of the flow (measured in the reference
frame of the mean flow) cannot be bounded.
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Exact results on intermittency

Under the second assumption and the conditions of
the previous proposition, if the Mach number based on
v0 is held fixed, and Re is increased indefinitely, then
the maximum Mach number of the flow also increases
indefinitely.

Note that this would violate the incompressibility
condition, but, in any case, the second proposition is
not consistent with a uniform (in Re) validity of the
incompressible NS equation.
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Intermittency Summary

If the even-order structure functions follow power laws
with exponents ζ2p;

and if the incompressibility approximation does not
break down at high Re;

then the graph of ζ2p versus p is concave and
nondecreasing.
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β Model

Simplest phenomenological model to incorporate a form of
intermittency.
At each stage of the Richardson cascade, the number of
daughters of a given mother eddy is chosen so that the
fraction of volume occupied is decreased by a factor β
(0 < β < 1).
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β Model

In this model, the fraction pl of active space within eddies of
size l = rnl0 goes as

pl = βn = β
ln(l/l0)

lnr = (l/l0)
3−D, (39)

where

3 −D ≡
lnβ

lnr
(40)

D is interpreted as fractal dimension.
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β Model

Figure 2: The cascade according to the β−model. Notice
that at each step the eddies become less and less space
filling.
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β Model

It follows that the energy per unit mass associated with
motion on scale ∼ l is

El ∼ v2
l pl = v2

l (l/l0)
3−D. (41)

At high Reynolds number, the inertial range energy flux is
given by

Π′
l ∼ ǫ ∼

v3
0

l0
. (42)

Combining we get

vl ∼ v0(
l

l0
)

1
3
− 3−D

3 ; (43)
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tl ∼
l

vl

∼
l0
v0

(
l

l0
)

2
3
+ 3−D

3 ; (44)
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β Model

The velocity field has the scaling exponent

h =
1

3
−

3 −D

3
(45)

The order-p equal-time structure function and its scaling
exponent is defined as

Sp(l) = 〈δvp
l 〉 ∼ vp

0(
l

l0
)ζ
p, (46)

with
ζp =

p

3
+ (3 −D)(1 −

p

3
), (47)

a deviation from the K41 value.
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β Model

The energy spectra in the inertial range is given by

E(k) ∝ k−( 5
3
+ 3−D

3
), (48)

which is steeper than the k−5/3 K41 scaling.
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Bifractal Model

The β-Model is equivalent to the statement that the velocity
field has a scaling exponent h on a set S of fractal
dimension D, such that h and D are related by
h = 1

3
− 3−D

3
. A natural extension to this is the bifractal

model: there are now two sets S1 and S2 both embedded in
the physical space. Near S1 the velocity scales as h1, and
near S2 the velocity scales as h2.
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Bifractal Model

Specifically, we assume the following :

δvl(r)

v0
∼ (

l

l0
)h1 , r ∈ S1, dimS1 = D1 (49)

δvl(r)

v0

∼ (
l

l0
)h2 , r ∈ S2, dimS2 = D2 (50)
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Bifractal Model

The scaling exponent h1 gives a contribution (l/l0)
ph1 which

must be multiplied by the probability (l/l0)
3−D1 of being

within a distance l of the set S1 and similarly for the other
exponent.So

Sp(l) = µ1(
l

l0
)ph1(

l

l0
)3−D1 + µ2(

l

l0
)ph2(

l

l0
)3−D2 (51)

The power-law with the smallest exponent will dominate;
we thus obtain

Sp(l) ∝ lζp, ζp = min(ph1 + 3 −D1, ph2 + 3 −D2) (52)
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Multifractal Model

The velocity of a turbulent flow is assumed to possess a
range of scaling exponents, I = (hmin, hmax).
For each h in this range, there is a set Sh of fractal
dimension D(h), such that

δu~r(ℓ)

u0

∝ (
ℓ

ℓ0
)h ~r ∈ Sh

where u0 is the velocity at the forcing scale ℓ0.
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Multifractal Model

Sp(ℓ)

up
L

≡
〈δup(ℓ)〉

up
L

∝

∫

I

dµ(h)(
ℓ

L
)[ph+3−D(h)]
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Multifractal Model

The measure dµ(h) gives the weight of the different
exponents.

( ℓ
L
)ph for power p.

( ℓ
L
)3−D(h) is the probability of being within a distance

∼ ℓ of the fractal set of dimension D(h).

Steepest-descent: ζp = inf
h

[ph+ 3 −D(h)].
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Multifractal Model

Dynamic Structure Functions

Fp(ℓ, t) ∝

∫

I

dµ(h)(
ℓ

L
)Z(h)Gp,h(

t

τp,h
),

where Gp,h( t
τp,h

) has a characteristic decay time

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h, and Gp,h(0) = 1. If
∫ ∞

0
t(M−1)Gp,hdt

exists, then the order-p, degree-M , integral time scale is
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Multifractal Model

T I
p,M(ℓ) ≡

[

1

Sp(ℓ)

∫ ∞

0

Fp(ℓ, t)t
(M−1)dt

](1/M)

.
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Multifractal Model

T I
p,1(ℓ) ≡

[

1

Sp(ℓ)

∫ ∞

0

Fp(ℓ, t)dt

](1/M)

∝

[

1

Sp(ℓ)

∫

I

dµ(h)(
ℓ

L
)Z(h)

∫ ∞

0

dtGp,h(
t

τp,h

)

]

∝

[

1

Sp(ℓ)

∫

I

dµ(h)(
ℓ

L
)ph+3−D(h)ℓ1−h

]
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Multifractal Model

In the last step, we have used :

τp,h ∼ ℓ/δv(ℓ) ∼ ℓ1−h
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Multifractal Model

Corresponding Bridge Relations :

zI
p,1 = 1 + [ζp−1 − ζp],

zD
p,2 = 1 + [ζp − ζp+2]/2.

Bridge relations reduce to zK41
p = 2/3 if we assume

K41 scaling for the equal-time structure functions.
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Multifractal Model

Integral time-scale of order-p, degree-M

T I
p,M(ℓ) ≡

[

1

Sp(ℓ)

∫ ∞

0

Fp(ℓ, t)t
(M−1)dt

](1/M)

.
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Multifractal Model

From the longitudinal, time-dependent, order-p
structure functions, the order-p, degree-M , integral
time scale is defined as,

T I
p,M(r) ≡

[

1

Sp(r)

∫ ∞

0

Fp(r, t)t
(M−1)dt

](1/M)

The integral dynamic multiscaling exponent zI
p,M is

defined as
T I

p,M(r) ∼ rzI
p,M .
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Multifractal Model

Similarly, the order-p, degree-M derivative time scale
is defined as

T D
p,M(r) ≡

[

1

Sp(r)

∂MFp(r, t)

∂tM

](−1/M)

The derivative dynamic multiscaling exponent zD
p,M is

defined as
T D

p,M(r) ∼ rzD
p,M .
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Multifractal Model

The multifractal model predicts the following bridge
relations:

zI
p,M = 1 +

[ζp−M − ζp]

M
;

zD
p,M = 1 +

[ζp − ζp+2]

M
.
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