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Application of the quantum-field theory methods

in the theory of developed turbulence

Michal Hnatič
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Outline

six lectures

• Short introduction to the theory of stochastic developed turbulence

• Basic terminology and technology of QFT. Schwinger equations.
Divergences of graphs and ultraviolet renormalization

• Equivalence of a stochastic problem and an effective quntum field
theory (field-theoretic model). Formulation of the model of stochas-
tic developed turbulence as the field-theoretic model

• Galilean symmetry of the model, Ward identities

• Conservation laws for the energy and momentum.

• Stochastic MHD as a quantum field model
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Main object for study: strongly developed turbulence

important control parameter:
Reynolds number Re = V L/ν0

typical scales are present:
L – external length (diameter of cylinder),
l – dissipation length

laminar flow: Re = V L/ν0 ≤ Recrit
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intermediate state: Re = V L/ν0 ≥ Recrit
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developed turbulence: Re = V L/ν0 � Recrit
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developed turbulence: Re = V L/ν0 � Recrit
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Near threshold Re ≥ Recrit: structure of turbulent eddies first appear
at L is determined by the full geometry ⇒ remebers the details of the
global structure

Problems of this type can be solved only individually for each specific
system
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Developed turbulence: extremely irregular behaviour of velocity field
in time and space:

velocity field fluctuations in time
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histogram for velocity fluctuations
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stability of ”distribution” of fluctuations in time
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� Developed turbulence: velocity field V (x, t) = u(x, t) + ϕ(x, t)
u(x, t) smooth laminar component, ϕ(x, t) relatively small stochas-
tic (irregular) component

� Statistic charakteristics of random field ϕ(x, t): correlation func-
tions + various response functions = Green functions

� Re >> Recrit, L >> l ⇒ inertial interval of scales L >>
r >> l, where we can learn Green functions and it is possible to
ignore nontrivial global structure of turbulent system

� It leads to the problem homogeneous, isotropic developed tur-
bulence, where largest eddies are assumed to be the energy source
and the statistical correlations of random field become the main
objects of interest

� Developed turbulence is observed for liquids and gases and obeys
the same general laws

� Typical velocity of turbulent fluctuations: much smaller than speed
of sound (Mach number is much smaller than unit) ⇒ neglect of
compressibility ⇒ velocity field is solenoidal (transverse)
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Stochastic Navier-Stokes equation for velocity fluctuations ϕ:

∂tϕ + (ϕ∇)ϕ− ν0∆ϕ +∇p = f , ∇t ≡ ∂t + (ϕ∇) (1)

pressure fluctuations p, viscosity coefficient ν0: (ϕ ≡ ϕi(x, t), p ≡
p(x, t))
ϕ∇ ≡

∑
i ϕi∇i, i = 1 . . . d, scalar product

incompressible fluid with the solenoidal velocity ∇ϕ = 0, unit den-
sity of fluid ρ = 1

f represents an external random force: mimics an interaction between
average smooth velocity and fluctuations ϕ

Gaussian distribution with zero mean and a given pair correlator:

〈fi(x)fj(x
′)〉 ≡ Dij(x, x

′) =
δ(t− t′)

(2π)d

∫
dk d(k)Pij(k)eik.(x−x′) ,

(2)
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d – dimension of space x,

Pij(k) = δij − kikj/k
2 – the transverse projection operator in wave-

vector k (k = |k|) space
“Energy injection” d(k):

d(k) = D0k
4−d−2εF (kL) (3)

convinient to choose D0 = g0ν
3
0 , the scaling function F (kL): unit

asymptotic behaviour in the range of large wave numbers (inertial inter-
val) kL� 1
ε ≥ 0 is a free parameter of the model,
ε ≥ 2 corresponds to the energy injection into the turbulent flow from
the range of the largest scales ∼ L, or equivalently, from range of the
smallest wave numbers k ∼ L−1

d(k): simple relation with a physically measurable quantity – average
energy dissipation rate E = −ν0〈(∇ivj +∇jvi)

2〉/2

E =
d− 1

2(2π)d

∫
dk d(k) . (4)
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transport phenomena in turbulent environment (advection of pollu-
tants in the Earth’s atmosphere, redistribution of heat in turbulent fluid
and so on) or behaviour of the magnetic field in electrically conductive
fluid ⇒
an additional equation for the random field θ (concentration, tempera-
ture, magnetic field...)

The general form of such an equation:

∂tθ + (ϕ∇)θ −R0∆θ +H(θ, ϕ) = f θ , (5)

R0 – a “diffusion” coefficient
An external stochastic forcing f θ: random injection of the quantity θ
into the turbulent system
The form of the (non)linear term H(θ) depends on concrete models:
H = 0 for passive scalar, H = θn n = 1, 2, 3... for radioactive or
chemically active scalar admixture, H ≡ −(θ∇)ϕ for the magnetic
field (N.S.: to add Lorentz force)
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Main objects of interest

Green (correlation and response) functions of random fields

Physical phenomenon: Scaling in inertial interval explained in the frame-
work of Kolmogorov phenomenological theory (K41)
For experimental study structure functions Sp are suitable:
statistical averages of equal-time powers of the projection of the veloc-
ity field ϕ onto the direction r = x − x′ along two separate space
coordinates x,x′

Sp(r) ≡ 〈[ϕr(x)− ϕr(x
′)]p〉 , r ≡ |x− x′| , ϕr ≡ ϕr/r (6)

Kolmogorov hypotheses for stationary homogeneous end isotropic de-
veloped turbulence
(only equal time correlations will be considered):

Hypothesis 1: In the region r � L statistical distribution of the ran-
dom velocity ϕ depends on the total pumping power (equal to the energy
dissipation rate E), but is independent of the details of its structure, in-
cluding the specific value of L
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Hypothesis 2: In the region r � l this distribution is independent
of the viscosity coefficient ν0

Particular consequence from the second hypothesis :
structure functions have a simple scaling form in r � l:

Sp(r) = (Er)p/3fp(r/L) , (7)

fp are arbitrary scaling functions.
The both hypotheses:
Structure functions have a simple power form:

Sp(r) = Cp(Er)ζp , (8)

some constants Cp and the celebrated Kolmogorov exponents ζp = p/3,
which are linear functions on p
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Scaling exponents ζp for structure functions: dependence on p
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Developed turbulence and its theoretical description:

• system with infinite number of degree of freedom

• can be considered on full time axis from minus to plus infinity, in
infinite space and formally for arbitrary dimension

• strongly non-linear system

• statistical system with extremely irregular behaviour of velocity field
in time and space

In a certain sence it suggests the quantum field theory which is succes-
fully applied for description of interactions of elementary particles and
for critical behaviour of systems near the point of phase transition
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natural ambition: to apply powerful methods of QFT to solve the prin-
cipal problems of developed turbulence
to make it:

1. we have to understand how to pass over from formulation in termi-
nology of problem based on stochastic N-S equation to the termi-
nology of an effective quantum field model (field-theoretic model)

2. to understand what objects in QFT correspond to the statistical
quatities in stochastic model (correlation functions, response func-
tions, structure functions etc.)

Answer is:
The stochastic problems (1)- (5) can be re-formulated as quantum-field
(field-theoretical functional) models with an effective action. In the
framework of these models one is able to use powerful mathematical
tools to derive renormalization group equations for correlation, response
or structure functions of fields or more complicated quantities – the
composite operators. Solutions of such equations have the scaling form
in the asymptotic large-scale regions with definite exponents, which, at
least, can be calculated perturbatively.
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Quantum Field Theory methods ⇔ Field-Theoretic Methods

– definition of basic objects

– functional formulation, Feynman perturbation theory

– Schwinger equations

– UV renormalization

– equivalence theorem

– Galilean invariance
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Basic definitions:

we will orientate ourself on functional formulation of QFT:
quantum fields (scalar field, photon field, fermion fields for electrons,
positrons, quarks etc. ) ⇒ their clasical counterpartners which appears
when we carry out the quantization of arbitrary system by means of path
Feynman (functional) integral
physical quantity under consideration:
a random field ϕ(x) – an analogy of quantum field
Generally, ϕ(x) – the set of fields with vector (discrete) indices
Features:
– we will consider euclidian space, which is natural for description of
phase transitions or for classical non-relativistic systems, contrary to the
pseudoeuclidian (Minkowski) space typical for relativistic systems
– for simplicity we will consider the dependence only on space variable,
inclusion of time is straightforward and does not bring principal technical
problems. The argument x icludes all continuous and disrete variables
(indices) on which the field depends
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Full correlation functions Gn of the field ϕ (full Green functions in
field theory):

Gn(x1, . . . , xn) = 〈ϕ(x1) . . . ϕ(xn)〉 , n ≥ 1, G0 = 1 (9)

Averaging over a statistical ensemble (if necessary can be specified)

Spatially uniform systems: ⇒ functions are translationally invariant ⇒
〈ϕ(x)〉 is independent of the spatial components of the argument x,
and the higher functions depend only on their differences
The average of the product of two such fields – pair correlation function
of the fluctuation field (the propagator in quantum field theory):

D(x, x′) ≡ 〈ϕ(x)ϕ(x′)〉 − 〈ϕ(x)〉 〈ϕ(x′)〉
Uniform system: ⇒ depends only on the coordinate difference

Analogy in QFT: ϕ, operator in Gilbert space x ≡ t,x, (c = 1)
its Green functions:

Gn(x1, . . . , xn) = (0|T{ϕ(x1) . . . ϕ(xn) |0) , n ≥ 1, G0 = 1 (10)

physical vacuum average of T–product of operators ϕ



23/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

The Fourier transforms of translationally invariant functions: depend-
ing only on the difference x − x′ of spatial coordinates in a space of
arbitrary dimension d

F (x, x′) = (2π)−d

∫
dkF (k)exp[ik(x− x′)]

F (k) =

∫
d(x− x′)F (x, x′)exp[ik(x′ − x)]

coordinate and momentum representations distinguished only by the
arguments

x, x′ – d-dimensional spatial coordinates, k is the d-dimensional mo-
mentum (wave vector), and k(x− x′) is the scalar product of vectors

The fields with discrete indices ⇒ all F are matrices in these indices
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The functional formulation

Fundamental tool: functional and diagrammatic technique of quantum
field theory
Green functions in field theory:
full (normalized and unnormalized),connected, 1-irreducible
Functional for full Green functions:

G(A) =

∞∑
n=0

1

n!

∫
...

∫
dx1...dxnGn(x1...xn)A(x1)...A(xn) (11)

Argument A(x) of functional G: an arbitrary function with x the same
as for the field ϕ(x)
A functional Taylor expansion ⇒ functions Gn are its coefficients:

Gn(x1...xn) =
δnG(A)

δA(x1)...δA(xn)
|A=0

always symmetric with respect to permutations of x1...xn
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Connected Green functions Wn(x1, . . . xn)

W (A) = lnG(A) =
∑

n

1

n!
WnA

n (12)

Coefficients of the Taylor expansion of W (A) analogous to (11)
G(A) = eW (A) expand both sides in A, and equate the coefficients of
identical powers of A:

1 = G0 = eW0 W0 = 0, G1(x) = W1(x)

G2(x, x
′) = W2(x, x

′) +W1(x)W1(x
′)

G3(x, x
′, x′′) = W3(x, x

′, x′′) +W1(x)W2(x
′, x′′) +W1(x

′)W2(x, x
′′)+

+W1(x
′′)W2(x, x

′) +W1(x)W1(x′)W1(x′′)

W1(x) = 〈ϕ(x)〉 , W2(x, x
′) = D(x, x′)

home excercise
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One-particle irreducible functions and their generating functional

It has a physical importance, e.g. in the analysis of stability of the
system above and below critical point at phase transition and its be-
haviour below critical point when spontaneous symmetry breaking takes
place. These functions play crucial role in the analysis of UV renormal-
ization of the theory!

Legendre transform Γ(α) of the functional W with respect to A:

Γ(α) = W (A)− αA, α(x) =
δW (A)

δA(x)
,
δΓ(α)

δα(x)
= −A(x) (13)

αA =

∫
dxα(x)A(x) (14)

Functional variables A, α are conjugate of each other, and either can
be taken as the independent variable

−
∫
dx′′

δ2Γ(α)

δα(x)δα(x′′)

δ2W (A)

δA(x)δA(x′′)
= δ(x− x′) (15)
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δW (A, a)

δa
=
δΓ(α, a)

δa
(16)

a any auxiliary numerical or functional parameter

1-irreducible Green functions

Γn(x1, . . . , xn;α) =
δnΓ(α)

δα(x1)...δα(xn)
(17)
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Generating functional:

Theory with action

S(ϕ) = S0(ϕ) + V (ϕ), S0(ϕ) = −1

2
ϕKϕ (18)

Z =

∫
DϕeS(ϕ)

expetation value of random quantity Q(ϕ)

〈Q(ϕ)〉 = Z−1
∫
DϕQ(ϕ)eS(ϕ)

particularly, Green functions:

Gn (x1, . . . , xn) = Z−1
∫
Dϕϕ(x1) . . . ϕ(xn)e

S(ϕ)

G (A) = Z−1
∫
DϕeS(ϕ)+Aϕ (19)



29/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

Reflections

– Mathematically: the theory of a classical random field is identical
to (Euclidean) quantum field theory, for which the functional integra-
tion technique was actually developed
– Free theory with quadratic action, the Gaussian functional integrals
can be calculated exactly, and the interaction V can be taken into ac-
count using perturbation theory. The convenient technique of Feynman
diagrams has been developed to describe the terms of the perturbation
series.
– All basic relations needed for perturbative calculations will be intro-
duced
– All the general formulas in universal notation are valid for any field or
set of fields
– The fundamental definitions involve functional (path) integrals, and so
we need a precise formulation of the rules for calculating such integrals
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Technically, it is simpler to take the following formal rule for calculat-
ing Gaussian integrals as a fundamental postulate:∫

Dϕe−
1
2ϕKϕ+Aϕ = det(K/2π)e

1
2AK−1A (20)

Aϕ – a general linear form, ϕKϕ – a quadratic form, linear symmetric
operator K acts on the fields ϕ, K−1– the inverse operator
All linear operators can be written as integral operators:

[Kϕ](x) ≡ (Kϕ)x =

∫
dx′K(x, x′)ϕ(x′) (21)

ϕKϕ =

∫ ∫
dxdx′ϕ(x)K(x, x′)ϕ(x′) (22)

Kernel K(x, x′) symmetric ⇒ K(x, x′) = K(x′, x)
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REMARK:

For translationally invariant operators (including differential operators
with constant coefficients), the kernel K(x, x′) depends only on the dif-
ference of spatial coordinates x − x′ . If the Fourier transform K(k)
is defined by a standard way, then for a differential operator it will be
a simple polynomial in the momenta. A convolution of kernels then
corresponds to a product of Fourier transforms without an additional
coefficient, and so the inverse operator corresponds simply to K−1(k).
All operators remain matrices in their discrete indices, if there are any.
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Calculation of determinants of arbitrary operators:

det(LM) = detL detM, det(Kα) = (detK)α,

detL/detM = det(LM−1) = det(M−1L) = det(L/M), (23)

det(KT ) = detK, detK = etr lnK (24)

Let us give several useful formulas involving variational derivatives.
Variational differentiation:
basic definition

δϕ(x)/δϕ(x′) = δ(x− x′)

VERY very usefull relations:

F (δ/δϕ)eAϕ · · · = eAϕF (A + δ/δϕ) . . . (25)

F (δ/δϕ)eAϕ = F (A)eAϕ (26)

eAδ/δϕF (ϕ) = F (ϕ + A) (27)



33/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

Gaussian functional integral in field theory: free action plays the role
of the quadratic form
Symmetric operator kernel ∆ ≡ K−1, called the free (bare) propagator
or correlator of the field, will be represented as a line in the graphs

S(ϕ) = S0(ϕ) + V (ϕ), S0(ϕ) = −1

2
ϕKϕ, ∆ = ∆T = k−1 (28)

The formal substitution A(x) → δ/δψ(x) from GI can be used to obtain
the expression

c

∫
DϕeS0(ϕ)+ϕ δ

δψ = e
1
2
δ
δψ∆ δ

δψ (29)

1

2

δ

δψ
∆
δ

δψ
≡

∫ ∫
dxdx′

δ

δψ(x)
∆(x, x′)

δ

δψ(x′)
(30)

c – a normalization constant:

c−1 ≡
∫
DϕeS0(ϕ) = det(K/2π)−1/2 (31)
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From (27) and (29) for an arbitrary functional F (ψ):

e
1
2
δ
δψ∆ δ

δψF (ψ) = c

∫
DϕF (ϕ + ψ)eS0(ϕ) (32)

e
1
2
δ
δϕ∆ δ

δϕF (ϕ) = c

∫
DϕF (ϕ)eS0(ϕ) (33)

N.B.:

These expressions are fundamental for calculating non-Gaussian func-
tional integrals (32) can be used to rewrite any expression involving the
exponential operator as a functional integral!!!

Generating fuctional:

G(A) = eW (A) = c

∫
DϕeS(ϕ)+Aϕ (34)

can be rewritten in the form

G(A) = e
1
2
δ
δϕ∆ δ

δϕeV (ϕ)+Aϕ|ϕ=0 (35)
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graphs terminology:

GF of connected Green functions
W (A) = lnG(A) = connected part of G(A)
contains only graphs in which every vertex is connected with remaining
part of graph at least by one line

GF of one-particle inrreducible functions (defined by Legendre trans-
form of W )
Γ(α) = IP-irreducible part of W
connected graphs:
– with amputated external lines ∧ A→ α
– all vertices in graph are connected in such a way that after breaking
(eliminating) just one arbitrary internal line the graf remains connected
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functions with insertion of composite operators

Composite operator F : any local construction formed from the field
ϕ(x) and its derivatives – ϕn(x), ∂iϕ

n(x), ϕ(x)∂2ϕ(x)

F (ϕ) = Fi(x;ϕ)– a set of composite operators
Generating functional of unnormalized full Green functions involving any
number of fields ϕ and operators F and these functions themselves are
the coefficients of the expansion of the functional in the set of sources
A and a

G(A, a) = c

∫
DϕeS(ϕ)+aF (ϕ)+Aϕ, W (A, a) = lnG(A, a) (36)

ai(x) – arbitrary sources in the linear form

aF (ϕ) ≡
∑

i

∫
dxai(x)Fi(x;ϕ)

Generating functional ( first derivative of W (36) with respect to the
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source a at a = 0):

WF (x;A) ≡ 〈〈F (ϕ)〉〉 ≡
∫
DϕF (ϕ)eS(ϕ)+Aϕ∫
DϕeS(ϕ)+Aϕ

(37)

〈F (ϕ)〉 ≡
∫
DϕF (ϕ)eS(ϕ)∫
DϕeS(ϕ)

(38)

Connected Green functions containing one operator F and arbitrary
number of fields ϕ

〈F (x)ϕ(x1), . . . ϕ(xn)〉 =
δnWF (x;A)

δA(x1) . . . δA(xn)
(39)
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The Schwinger equations

Any relations expressing invariance of the measure Dϕ under trans-
lations ϕ(x) → ϕ(x) + ω(x) by arbitrary fixed functions ω belonging
good-defined space with ω(∞) = 0
Such translations do not change the integration region ⇒ the quantity∫

DϕF (ϕ + ω)

is independent of ω for any F ⇒ first variation with respect to ω gives∫
Dϕ

δF (ϕ)

δ(x)
= 0 (40)

F = eS(ϕ)+Aϕ

∫
Dϕ

δ

δϕ
eS(ϕ)+Aϕ = 0 (41)∫

Dϕ

[
δS(ϕ)

δϕ
+ A(x)

]
eS(ϕ)+Aϕ = 0 (42)
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Multiplication by ϕ inside the integral of GF (G(A)) is equivalent to
differentiation of the integral with respect to A[

δS(ϕ)

δϕ
|ϕ=δ/δA + A(x)

]
G(A) = 0 (43)

REMARK:

By substituting G = eW we can obtain the equivalent equation for
W (A), and from it we find the equation for Γ(α). All these equations
are of finite order (for polynomial action) in the variational derivatives,
and are equivalent to an infinite chain of coupled equations for the exact
Green functionsthe expansion coefficients of the corresponding function-
als.

home exercise: derive SE for W
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UV renormalization

QF model: specified by the action S

Green functions: infinite graph expansions

Graphs: integrals over momenta

Divergencies at large momenta ⇒ the model contains ultraviolet (UV)
divergences

Typical situation in QFT at d = 4 (couple constant dimensionless ⇔
logarithmic theory)

Procedure of elimination of UV divergencies in graphs of Green func-
tions: UV renormalization
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unrenormalized model: the action S with fields ϕ and bare param-
eters eo – masses, couple constants, etc. ⇒ generates GF with UV
divergencies

renormalized model: renormalized action SR with fields ϕR and renor-
malized parameters e ⇒ generates UV finite Green fuctions

if ϕR = Z−1
ϕ ϕ, e0 = Zee ∧ SR(ϕ, e) = S(Zϕϕ, e0) valid ⇒

Multiplicatively renormalizable model !

Elimination of UV divergencies: it is enough to eliminate them in IP-
irreducibne graphs
classification of UV divergencies by canonical dimensional counting
canonical dimension of IP-irreducible GF Γn : dΓn = d− ndϕ

logarithmic theory ⇔ dimensionless couple constant: dΓn = δ – UV
diverdence index
δ ≥ 0 corresponding graphs diverge – contain superficial divergence
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General information about the equations of stochastic dynamics (in-
cluding model of stochastic developed turbulence)

Standard problem of stochastic dynamics:

∂tϕ(x) = U(x, ϕ) + f (x), 〈f (x)f (x′)〉 = D(x, x′) , (44)

ϕ(x) ≡ ϕ(x, t) – a random (scalar, vector etc.) field (or set of fields)
U(x, ϕ) – a given t-local functional
Random forcing f (x): the Gaussian distribution with zero mean 〈f (x)〉 =
0 and a given pair correlator D
Specific form of correlator dictated by the concrete physical problem
under consideration

Generally: d-dimensional space, x – d-dimensional position vector

Completeness of formulation of the problem (44): convenient to add
the retardation condition – reflects causality of all processes
equation for all time axis t with ϕ → 0 at t → −∞ and at |x| → ∞
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for arbitrary time moment t
Quantities to be calculated are the correlation functions of field ϕ and
also the response functions on external forcing:〈

δm [ϕ(x1)...ϕ(xn)]

δf (x′1)...δf (x′n)

〉
(45)

〈
δϕ(x)

δf (x′)

〉
(46)

Symbol 〈. . .〉: averaging over the Gaussian distribution of the random
forcing f (x)

– averaging over all configurations f (x) with the weight exp
[
−fD−1f

2

]
Response functions are retarded:
natural condition of causality i.e. at time t the solution ϕ of the equa-
tion (44) is independent of random forcing f taken at the time moment
t′ > t
Simple variant of dynamics:
a given static action Sst(ϕ), which is a functional of a time-independent
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field ϕ(x) ⇒ stochastic the Langevin equation:

∂tϕ(x) = α

{
δSst(ϕ)

δϕ(x)
|ϕ(x)→ϕ(x)

}
+ f (x), 〈f (x)f (x′)〉 = 2αδ(x−x′) ,

(47)
α – the Onsager coefficient, δ(x− x′) ≡ δ(t− t′)δ(x− x′)

The simplest example:
Brownian motion:

∂tri(t) = fi(t), 〈fi(t)fj(t
′)〉 = 2αδijδ(t− t′) , (48)

ϕ(x) ≡ ri(t) – the coordinates of particle at time t, α –a diffusion
coefficient

Important remark

The general problem (44) differs from (47) by the arbitrariness of the
correlator D and the functional U, which may not be to reduce to the
variational derivative of some functional
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Another interesting example:

Stochastic Navier-Stokes equation

∂tϕ(x) = ν0∆ϕ(x)− (ϕ(x) ·∇)ϕ(x)−∇p(x) + f (x) (49)

Functional U(x, ϕ):
the regular (non-random) force fn, a linear part in field ϕ Lϕ and a
nonlinear part n(ϕ)

U(ϕ) = Lϕ + n(ϕ) + fn . (50)

NB:

The iterative (perturbative) approach to the given problem is based on
the following consideration: the linear problem is solvable exactly and
the contribution of the nonlinear terms n(ϕ) it is possible to include with
an arbitrary precision by means of a perturbation scheme (we assume,
of course, small enough weight of the nonlinearity). Due to this fact it
is reasonable to rewrite equation (44) in an integral form:

ϕ = ∆12 [fn + f + n(ϕ)] , (51)
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∆12 = ∆12(x, x
′) ≡ (∂t − L)−1 – retarded Green function of linear op-

erator (∂t − L) ( ∆12(x, x
′) = 0 for t < t′

Next step:
to know the specific form of nonlinear term n(ϕ)

Result:
Solution ϕ(x) – sum of an infinite series of tree graphs (graphs without
loops)
Demonstration how this method works:

n(x;ϕ) = vϕ2(x)/2 (52)

Graphical representation fn = 0:

= +
1

2
(53)

ϕ – wavy external line (tail), f – cross, ∆12(x, x
′) – straight line with

marked end corresponding to the argument x′

Jointing point for three graphical elements (straight lines and tails) –
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vertex factor v.

Representation of ϕ(x) in the form of an infinite sum of tree graphs:

= +
1

2
+

1

2
+

1

4
+ · · · (54)

the root at the point x, crosses f on the ends of all branches.

NB:

Correlation functions are obtained by multiplying together the tree graphs
in (54) for all the factors of ϕ and then averaging over f , which corre-
sponds graphically to contracting pairs of crosses to form correlators D
in all possible ways. This operation leads to the appearance of a new
graphical element – unperturbed pair correlation function 〈ϕϕ〉0 , – a
simple line without marks:

∆11 ≡ 〈ϕϕ〉0 = ∆12D∆T
12 = =

〈 〉
= (55)
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the spring – D

!!! All the crosses f should be contracted to form correlators D, and
graphs with an odd number of crosses give zero when the averaging is
done!!!

Correlation functions ϕ:– Feynman-type graphs with triple interaction
vertices and two types of line: ∆11,∆12.

Example:〈 〉
= =

NB:

Graphical representations of the response functions are constructed from
(54) and the definition (45) in exactly the same way, and variational dif-
ferentiation with respect to f corresponds graphically to removing the
cross in all possible ways with the appearance of the free argument x′

on the end of the corresponding line.



49/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

the first few graphs of the correlator 〈ϕϕ〉 and the response function:

〈ϕϕ〉 = +
1

2
+

1

2
+

+
1

2
+ + + . . . , (56)〈

δϕ(x)

δf (x′)

〉
= +

1

2
+ + . . .

In a similar manner all correlation and response functions can be ob-
tained.

This graphical technique was first introduced and analyzed in detail
for the NavierStokes equation by
H.W. Wyld, Ann. Phys. (N.Y.) 14, (1961), 143
for the general problem (44)
P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, (1973) 423
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Reduction of the stochastic problem to a quantum field model

The graphs can be identified as Feynman graphs if we admit the ex-
istence of a second field ϕ′ in addition to ϕ with zero bare correlator

〈ϕ′ϕ′〉 |0 = 0

and if we interpret the line ∆12 as a bare correlator and the response
function (46) as the exact correlator

〈ϕϕ′〉 .

The triple vertex corresponds to the interaction V = ϕ′vϕϕ/2. Evi-
dently, (56) involves all the graphs of this quantum-field model without
contracted lines

∆12 = 〈ϕϕ′〉 |0
and no others, so that the complete proof of the equivalence would

require only showing that the symmetry coefficients coincide.

another more simple way exists how to proof the equivalence of stochas-
tic problem with a quantum field model



51/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

Proof of equivalence of stochastic problem to a quantum-field model

Janssen, H. K. (1976) Z. Phys. B 23, 377
De Dominicis, C. and Peliti, L. (1978) Phys. Rev. B 18, 353
Adzhemyan, L. Ts., Vasilev, A. N., and Pismak, Yu. M. (1983) Teor.
Math. Phys. 57, 1131

Solution of eq. (44): ϕ̃ ≡ ϕ̃(x; f )
Generating functional G(A) for correlation functions of the field ϕ̃

G(Ã) =

∫
Dfe[−fD−1f/2+Ãϕ̃] (57)

Ã(x) – a source
Useful identity:

exp(Ãϕ̃) =

∫
Dϕδ(ϕ− ϕ̃) exp(Ãϕ) (58)

Functional δ-function

δ(ϕ− ϕ̃) ≡
∏

x

δ [ϕ(x)− ϕ̃(x)] (59)
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ϕ̃ – unique solution of the equation (44) ⇒
ϕ = ϕ̃⇔ Q(ϕ, f ) ≡ −∂tϕ + U(ϕ) + f = 0 (60)

δ(ϕ− ϕ̃) = δ [Q(ϕ, f )] detM , M =
δQ

δϕ
(61)

M(x, x′) = δQ(x)/δϕ(x′)
Integral representation of δ-function:

δ [Q(ϕ, f )] =

∫
Dϕ′ e[ϕ′ Q(ϕ,f)] (62)

ϕ′ - auxiliary field

G(Ã) =

∫ ∫
DϕDϕ′ detM exp

[
ϕ′Dϕ′/2 + ϕ′ (−∂tϕ + U(ϕ)) + Ãϕ

]
(63)

Contribution of the determinant detM ≡ det
[

δQ
δϕ

]
:

M = M0 +M1, M0 = −∂t + L = −∆−1
12 , M1 ≡

δn(ϕ)

δϕ
(64)
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detM = detM0 det [1−∆12M1]

An infinite series

ln det [1−∆12M1] = −tr [∆12M1 + ∆12M1∆12M1 + · · · ] (65)

A diagrammatic representation: closed loops

ln det(1−M) = tr ln(1−M) =

= −tr
[
M +M 2/2 +M 3/3 + · · ·

]
(66)

Retardation condition ⇒ step function θ(t) ⇒ all closed multi-loops
vanish
The first one-loop term remains∫ ∫

dxdx′ ∆12(x, x
′)M1(x

′, x) (67)

t-locality of the functional U ⇒ kernel M1(x
′, x) = δ(t′ − t)M̃1(x

′, x)
Closed single-line loop contains the equal-time function (propagator)
∆12(x, x

′), (t = t′) - not defined

(∂t − L)∆12(x, x
′) = δ(x− x′) (68)
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∆12(x, x
′) = θ(t− t′)R(x, x′) (69)

R(x, x′)|t=t′ = δ(x− x′) (70)

(∂t − L)R(x, x′) = 0 (71)

∆12(x, x
′)|t=t′+0 = δ(x− x′), ∆12(x, x

′)|t=t′−0 = 0 (72)

Various definitions of the propagator ∆12(x, x
′)|t=t′

Usually ∆12(x, x
′)|t=t′ = 1/2

Reasonable to put ∆12(x, x
′)|t=t′ = 0

detM – an irrelevant constant
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Statement:

An arbitrary stochastic problem (44) is equivalent to the field theo-
retic model with double number of fields φ ≡ ϕ, ϕ′ and with the action
functional

S(φ) =

∫ ∫
dxdx′ϕ′(x)D(x, x′)ϕ′(x′)/2 + (73)

+

∫
dxϕ′(x) [−∂tϕ(x) + U (ϕ(x))]

Language of the field-theoretic model:
Green functions – functional ”averages” over the fields φ with “weight”
expS
Generating functional:

G(A) =

∫
Dφ e[S(φ)+Aφ]

Aφ ≡
∫
dx

[
Ã(x)ϕ(x) + A′(x)ϕ′(x)

]
, Dφ ≡ DϕDϕ′
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Response function 〈ϕϕ′〉 –

〈ϕ(x)ϕ′(x′)〉 =
δ2G(A)

δÃ(x)δA′(x′)
|A=0 =

∫
Dφ ϕ(x)ϕ′(x′)eS(φ)

Source A′ – regular (non-random) force added to the equation
These full Green functions (also connected and IP-irreducible) are the
same as their partners defined by (45) in the framework of the original
stochastic problem!!!

Action

S(φ) =

∫ ∫
dxdx′ ϕ′(x)D(x, x′)ϕ′(x′)/2 +

+

∫
dx ϕ′(x) [−∂tϕ(x) + Lϕ(x) + n (ϕ(x))] (74)

S0(ϕ, ϕ
′) – quadratic in fields part, V (ϕ, ϕ′) = ϕ′n(ϕ) – interaction

part
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Symmetric form of S0

S0(ϕ, ϕ
′) = −1

2
ϕKϕ ≡

≡ −1

2

(
ϕ
ϕ′

) (
0 (∂t − L)T

∂t − L −D

) (
ϕ
ϕ′

)
, (75)

KT (x, x′) = K(x′, x)
Inverse matrix ∆ = K−1 – a set of propagators

∆12 = ∆T
21 = (∂t − L)−1, ∆11 = ∆12D∆21, ∆22 = 0,

∆ik(x, x
′) = 〈ϕi(x), ϕk(x

′)〉0 , (76)

ϕ1 ≡ ϕ, ϕ2 ≡ ϕ′

Propagator ∆12 – retarded ⇒ ∆21 = ∆T
12 – advanced

Symmetric propagator ∆11 = ∆T
11 contains both (retarded and ad-

vanced) contributions. Interaction part: vertices with one field ϕ′ and
two or more fields ϕ (dictated by the concrete form of the nonlinear
terms)



58/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

Standard Feynman graphs of Green functions with lines (propagators)
defined by S0 and vertices defined by V (ϕ) by means of the Wick the-
orem:

G(A) = e
1
2
δ
δϕ∆ δ

δϕeV (ϕ)+Aϕ|ϕ=0, (77)

∆ – the matrix of propagators

δ/δϕi∆ikδ/δϕk ≡
∫
dxdx′δ/δϕi(x)∆ik(x, x

′)δ/δϕk(x
′)

–a universal differential operation
Expansion of both exponents in (77) ⇒ all Green functions as infinite
series of Feynman graphs
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Let us demonstrate how these general rules work in the theory of
developed turbulence.
According to the MSR mechanism the stochastic model described by
Eq. (1)-(3) is equivalent to the field-theoretic model with action (74),
which in this case is of the following form:

S(ϕ, ϕ′) =

∫ ∫
dxdx′ ϕ′i(x)Dij(x, x

′)ϕ′j(x
′) +

+

∫
dx ϕ′(x) · [−∂tϕ(x) + ν0∆ϕ(x)− (ϕ(x) · ∇)ϕ(x)]

the auxiliary vector field ϕ′ is solenoidal (∇ϕ′ = 0) like the velocity field
ϕ, Feynman rules for calculation of the Green functions:
the propagators (lines) ∆ and vertices V :

=< ϕiϕj >0≡ ∆ϕϕ
ij

=< ϕiϕ
,
j >0≡ ∆ϕϕ,

ij

=< ϕ,
iϕ

,
j >≡ ∆ϕ,ϕ,

ij = 0 ,



60/72

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2009

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

@
@@
�

��i
j

s
≡ Vijs.

The explicit form of propagators can be obtained from the quadratic part
of action (78) and in the frequency-wave-vector and time-wave-vector
representation have the form:

∆ϕϕ
ij (k, ωk) =

PijD(k)

(iωk + ν0k2)(−iωk + ν0k2)
,

∆ϕϕ
ij (k, t′ − t) =

PijD(k)

2ν0k2
e−ν0k

2|t′−t| ,

∆ϕϕ,

ij (k, ωk) =
Pij

(−iωk + ν0k2)
,

∆ϕϕ′

ij (k, t′ − t) = θ (t′ − t) e−ν0k
2(t′−t)Pij (78)

Pij = δij − kikj/k
2 is transverse projector due to incompressibility

The propagator ∆ϕϕ represents the leading approximation of the pair
correlation function of the velocity field W2ij = 〈ϕi ϕj〉, which in the
wave-vector representation is proportional to the kinetic energy spec-
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trum E(k)

The vertex V is given by the non-linear part of (78) and in the frequency-
wave-vector representation has the form:

V k
ijs = i(kjδis + ksδij), (79)

k denotes the wave-vector transferred by field ϕ′i
Diagrammatic representation of the pair correlation function W2 =
〈ϕϕ〉 in the one loop-approximation (first order in coupling constant
g0):

Pair correlation function of velocity field with one-loop precision

+ + +
1

2
+ . . .
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Ward identities

The Ward identities are various relations following from an exact or
approximate symmetry of the action. The simplest is the statement
that the Green functions are invariant, and it is conveniently stated in
the language of the corresponding generating functionals. In the theory
of stochastic turbulence Ward identities allow us to derive the relations
between Green functions and composite operators.

Consider the Galilean transformations of fields φ ≡ ϕ′, ϕ, φ→ φv:

ϕv(x) = ϕ(xv)− v(t), ϕ′v(x) = ϕ′(xv)

x ≡ x, t; xv ≡ x+u(t), t; u(t) =

∫ t

−∞
dt′v(t′) =

∫ ∞

−∞
dt′θ(t− t′)v(t′),

where v(t) is parameter of transformation. It is arbitrary velocity (vector
function) depending only on time and falls well-enough as |t| → ∞.
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transformation for action:

S(φv) = S(φ) + ϕ′∂tv

Galilean invariance for turbulence reads:

G(A) = G(Av) ⇒ δvG(A) = 0

functional integral measure is invariant: Dφ = Dφv∫
Dφδve

S(φv)+Aφv+aFv = 0∫
Dφ [φ′∂tv + Aδvφ + aδvF ] eS(φ)+Aφ+aF = 0 (80)

δvϕ(x) = u∂ϕ(x)− v, δvϕ
′(x) = u∂ϕ′(x),

δv∂tϕ(x) = u∂∂tϕ(x) + v∂ϕ(x)− ∂tv, ∂ ≡ ∇ ≡ ∂

∂x
a = 0 ⇒ Ward identities for Green fuctions
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terms linear in a⇒ Ward identities for composite operators

Ward identities for Green functions

〈〈φ′∂tv + A∂φ〉〉 = 0

(80) ⇒∫
dt

∫
dxv(t)

〈〈
−∂tφ

′(x) +

∫ t

−∞
A(x, t′)

∂φ(x, t′)

∂x
− Aϕ(x)

〉〉
= 0

v is arbitrary ⇒∫
dx

〈〈
−∂tφ

′(x) +

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂φ(x, t′)

∂x
− Aϕ(x)

〉〉
= 0

φ in 〈〈 〉〉 ⇔ δ

δA∫
dx

〈〈
−∂t

δ

δAϕ′(x)
+

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂

∂x

δ

δA(x, t′)
− Aϕ(x)

〉〉
= 0
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G = eW∫
dx

[
−∂t

δW

δAϕ′(x)
+

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂

∂x

δW

δA(x, t′)
− Aϕ(x)

]
= 0

in term of generating functional of one-particle irreducible functions:

Γ(α) = W (A)− αA, α(x) =
δW (A)

δA(x)
, A(x) = −δΓ(α)

δα(x)∫
dx

[
−∂tαϕ′(x) +

∫ ∞

−∞
θ(t− t′)

δΓ(α)

δα(x, t′)

∂α(x, t′)

∂x
− δΓ(α)

δαϕ(x)

]
= 0

(81)

Γ(α) = αϕ′Γϕ′ϕαϕ +
1

2
αϕ′Γϕ′ϕϕα

2
ϕ + . . .

αϕ′Γϕ′ϕϕα
2
ϕ ≡

∫ ∫ ∫
dx1dx2dx3αϕ′

i
(x1)Γϕ′

iϕsϕl
(x1, x2, x3)αϕs(x2)αϕl(x3)

Γϕ′
iϕs

(x1, x2) ≡ Γis(x1, x2), Γϕ′
iϕsϕl

(x1, x2, x3) ≡ Γisl(x1, x2, x3)
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Substitution this expansion to the (81) gives∫
dx Γisl(x1, x2, x)+

[
θ(t− t1)

∂

∂x1l

+ θ(t− t2)
∂

∂x2s

]
Γis(x1, x2) = 0

(82)
integration over t: important!!! due to translation invariance of Γis(x1, x2)

∂
∂x2

= − ∂
∂x1

and from it we obtain in (82)

θ(t− t1)− θ(t− t2) ⇒

after integration (82) over t we obtain final expression in time-coordinate
reprezentation∫

dx Γisl(x1, x2, x) + (t2 − t1)
∂Γis(x1, x2)

∂x1l

= 0

Ward identity in wave number - frequency representation p ≡ k, ω:

Γis(x1, x2) =
1

(2π)2+d

∫
dp Γis(p)e

ip(x1−x2)

Γisl(x1, x2, x3) =
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1

(2π)3(2+d)

∫ ∫ ∫
dp1dp2dp3δ(p1+p2+p3)Γisl(p1, p2, p3)e

i(p1x1+p2x2+p3x3)

∫
dx Γisl(x1, x2, x) =

1

(2π)(2+d)

∫
dp Γisl(p, p, 0)eip(x1−x2)

Finally

Γisl(p, p, 0) = kl

∂

∂ω
Γis(p)

Graphic representation:

i

p

l

s

p = 0

p
v′

v

v

= kl

∂

∂ω i
p

s
p

v′ v
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Conservation laws of energy – momentum in stochastic hydrodynam-
ics

Conservation laws of energy – momentum: important role to understand
the processes of redistribution and transfer of energy end momenta in
turbulent flow
Stochastic hydrodynamics: energy, momentum, their flows – random
quantities constructed on velocity and its derivatives
In field theory: composite operators
Swinger equations ⇒ Conservation laws∫

Dφ
δ

δφ
eS(φ)+Aφ = 0, φ ≡ ϕ′, ϕ (83)

⇒ Composite operator (random quantity) inside of brackets equals to
zero

δS(φ)

δφ
+ A(x) = 0 (84)
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First Swinger equation in field model of stochastic hydrodynamics:∫
Dφ

δ

δϕ′i(x)
eS(φ)+Aφ = 0 (85)

Aϕ′

i +Disϕ
′
s − ∂tϕi + ν0∆ϕi + (ϕ∂)ϕi − ∂ip = 0 (86)

non-local composite operator (pressure):

p = −∂l∂s

∆
(ϕlϕs) (87)

Second Swinger equation in field model of stochastic hydrodynamics:∫
Dφ

δ

δϕ′i(x)
ϕi(x)eS(φ)+Aφ = 0 (88)

ϕAϕ′
+ ϕDϕ′ − ϕ∂tϕ + ϕν0∆ϕ + ϕ(ϕ∂)ϕ− (ϕ∂)p = 0 (89)
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These relations – equations of composite operators: conservation laws
of energy and momentum

∂tϕi + ∂kΠik = Dikϕ
′
k + Aϕ′

i (90)

∂tE + ∂iSi = ε + ϕDϕ′ + ϕAϕ′
(91)

conservation laws for densities of conserved quatities (per unit mass,
ρ = 0):
ϕi – momentum density, E = ϕ2/2 – energy density

tensor of momentum flow density:

Πik = pδik + ϕiϕk − ν0(∂iϕk + ∂kϕi) (92)

vector of energy flow density:

Si = pϕi − ν0ϕk(∂iϕk + ∂kϕi) +
1

2
ϕiϕ

2 (93)

energy dissipation rate: tensor of momentum flow density:

ε =
1

2
ν0(∂iϕk + ∂kϕi)

2 (94)
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Averaging equations over φ with weight expS(φ) ⇒ energy momentum
balance equations
energy balance equation at vanishing external non-random forcing Aϕ′

:

∂t 〈E〉 + ∂i 〈Si〉 = −〈ε〉 + 〈ϕDϕ′〉 (95)

homogeneous an isotropic theory at vanishing external forcing ⇒ mean
value 〈F (x)〉 of arbitrary composite operator F (x) independent of x
i.e. constant ⇒ all its derivatives vanish:

0 = −ε̄ +

∫ ∫
x′dt′ 〈ϕi(x)ϕ′s(x

′)〉Dis(x, x
′), ε̄ = 〈ε〉 (96)

Dij(x, x
′) =

δ(t− t′)

(2π)d

∫
dkD(k)Pij(k)eik(x−x′) ≡ δ(t− t′)dis(x,x

′)

(97)

ε̄ =

∫
x′ 〈ϕi(x)ϕ′s(x

′)〉 |t=t′ dis(x,x
′) (98)

〈ϕi(x)ϕ′s(x
′)〉 |t=t′ =

1

2
δ(x− x′)Pis (99)
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Stationary homogeneous isotropic developed turbulence

pair correlator of random force f is expressed via the energy dissipa-
tion rate (= pumping power ):

ε̄ =
1

2
tr d(x,x) (100)

or

ε̄ =
d− 1

2(2π)d

∫
dk d(k), Pii(k) = trP (k) = d− 1, k ≡ k (101)


