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Outline

• Equivalence of a stochastic problem and an effective quntum field
theory
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UV renormalization

QF model: specified by the action S

Green functions: infinite graph expansions

Graphs: integrals over momenta

Divergencies at large momenta ⇒ the model contains ultraviolet (UV)
divergences

Typical situation in QFT at d = 4 (couple constant dimensionless ⇔
logarithmic theory)

Procedure of elimination of UV divergencies in graphs of Green func-
tions: UV renormalization
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unrenormalized model: the action S with fields ϕ and bare param-
eters eo – masses, couple constants, etc. ⇒ generates GF with UV
divergencies

renormalized model: renormalized action SR with fields ϕR and renor-
malized parameters e ⇒ generates UV finite Green fuctions

if ϕR = Z−1
ϕ ϕ, e0 = Zee ∧ SR(ϕ, e) = S(Zϕϕ, e0) valid ⇒

Multiplicatively renormalizable model !

Elimination of UV divergencies: it is enough to eliminate them in IP-
irreducibne graphs
classification of UV divergencies by canonical dimensional counting
canonical dimension of IP-irreducible GF Γn : dΓn

= d− ndϕ

logarithmic theory ⇔ dimensionless couple constant: dΓn
= δ – UV

diverdence index
δ ≥ 0 corresponding graphs diverge – contain superficial divergence
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General information about the equations of stochastic dynamics (in-
cluding model of stochastic developed turbulence)

Standard problem of stochastic dynamics:

∂tϕ(x) = U(x, ϕ) + f (x), 〈f (x)f (x′)〉 = D(x, x′) , (1)

ϕ(x) ≡ ϕ(x, t) – a random (scalar, vector etc.) field (or set of fields)
U(x, ϕ) – a given t-local functional
Random forcing f (x): the Gaussian distribution with zero mean 〈f (x)〉 =
0 and a given pair correlator D
Specific form of correlator dictated by the concrete physical problem
under consideration

Generally: d-dimensional space, x – d-dimensional position vector

Completeness of formulation of the problem (1): convenient to add
the retardation condition – reflects causality of all processes
equation for all time axis t with ϕ → 0 at t → −∞ and at |x| → ∞



5/36

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2008

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

for arbitrary time moment t
Quantities to be calculated are the correlation functions of field ϕ and
also the response functions on external forcing:〈

δm [ϕ(x1)...ϕ(xn)]

δf (x′1)...δf (x′n)

〉
(2)

〈
δϕ(x)

δf (x′)

〉
(3)

Symbol 〈. . .〉: averaging over the Gaussian distribution of the random
forcing f (x)

– averaging over all configurations f (x) with the weight exp
[
−fD−1f

2

]
Response functions are retarded:
natural condition of causality i.e. at time t the solution ϕ of the equa-
tion (1) is independent of random forcing f taken at the time moment
t′ > t
Simple variant of dynamics:
a given static action Sst(ϕ), which is a functional of a time-independent
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field ϕ(x) ⇒ stochastic the Langevin equation:

∂tϕ(x) = α

{
δSst(ϕ)

δϕ(x)
|ϕ(x)→ϕ(x)

}
+ f (x), 〈f (x)f (x′)〉 = 2αδ(x−x′) ,

(4)
α – the Onsager coefficient, δ(x− x′) ≡ δ(t− t′)δ(x− x′)

The simplest example:
Brownian motion:

∂tri(t) = fi(t), 〈fi(t)fj(t
′)〉 = 2αδijδ(t− t′) , (5)

ϕ(x) ≡ ri(t) – the coordinates of particle at time t, α –a diffusion
coefficient

Important remark

The general problem (1) differs from (4) by the arbitrariness of the
correlator D and the functional U, which may not be to reduce to the
variational derivative of some functional
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Another interesting example:

Stochastic Navier-Stokes equation

∂tϕ(x) = ν0∆ϕ(x)− (ϕ(x) ·∇) ϕ(x)−∇p(x) + f (x) (6)

Functional U(x, ϕ):
the regular (non-random) force fn, a linear part in field ϕ Lϕ and a
nonlinear part n(ϕ)

U(ϕ) = Lϕ + n(ϕ) + fn . (7)

NB:

The iterative (perturbative) approach to the given problem is based on
the following consideration: the linear problem is solvable exactly and
the contribution of the nonlinear terms n(ϕ) it is possible to include with
an arbitrary precision by means of a perturbation scheme (we assume,
of course, small enough weight of the nonlinearity). Due to this fact it
is reasonable to rewrite equation (1) in an integral form:

ϕ = ∆12 [fn + f + n(ϕ)] , (8)
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∆12 = ∆12(x, x′) ≡ (∂t − L)−1 – retarded Green function of linear op-
erator (∂t − L) ( ∆12(x, x′) = 0 for t < t′

Next step:
to know the specific form of nonlinear term n(ϕ)

Result:
Solution ϕ(x) – sum of an infinite series of tree graphs (graphs without
loops)
Demonstration how this method works:

n(x; ϕ) = vϕ2(x)/2 (9)

Graphical representation fn = 0:

= +
1

2
(10)

ϕ – wavy external line (tail), f – cross, ∆12(x, x′) – straight line with
marked end corresponding to the argument x′

Jointing point for three graphical elements (straight lines and tails) –
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vertex factor v.

Representation of ϕ(x) in the form of an infinite sum of tree graphs:

= +
1

2
+

1

2
+

1

4
+ · · · (11)

the root at the point x, crosses f on the ends of all branches.

NB:

Correlation functions are obtained by multiplying together the tree graphs
in (11) for all the factors of ϕ and then averaging over f , which corre-
sponds graphically to contracting pairs of crosses to form correlators D
in all possible ways. This operation leads to the appearance of a new
graphical element – unperturbed pair correlation function 〈ϕϕ〉0 , – a
simple line without marks:

∆11 ≡ 〈ϕϕ〉0 = ∆12D∆T
12 = =

〈 〉
= (12)



10/36

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2008

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

the spring – D

!!! All the crosses f should be contracted to form correlators D, and
graphs with an odd number of crosses give zero when the averaging is
done!!!

Correlation functions ϕ:– Feynman-type graphs with triple interaction
vertices and two types of line: ∆11, ∆12.

Example:〈 〉
= =

NB:

Graphical representations of the response functions are constructed from
(11) and the definition (2) in exactly the same way, and variational dif-
ferentiation with respect to f corresponds graphically to removing the
cross in all possible ways with the appearance of the free argument x′

on the end of the corresponding line.
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the first few graphs of the correlator 〈ϕϕ〉 and the response function:

〈ϕϕ〉 = +
1

2
+

1

2
+

+
1

2
+ + + . . . , (13)〈

δϕ(x)

δf (x′)

〉
= +

1

2
+ + . . .

In a similar manner all correlation and response functions can be ob-
tained.

This graphical technique was first introduced and analyzed in detail
for the NavierStokes equation by
H.W. Wyld, Ann. Phys. (N.Y.) 14, (1961), 143
for the general problem (1)
P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, (1973) 423
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Reduction of the stochastic problem to a quantum field model

The graphs can be identified as Feynman graphs if we admit the ex-
istence of a second field ϕ′ in addition to ϕ with zero bare correlator

〈ϕ′ϕ′〉 |0 = 0

and if we interpret the line ∆12 as a bare correlator and the response
function (3) as the exact correlator

〈ϕϕ′〉 .

The triple vertex corresponds to the interaction V = ϕ′vϕϕ/2. Evi-
dently, (13) involves all the graphs of this quantum-field model without
contracted lines

∆12 = 〈ϕϕ′〉 |0
and no others, so that the complete proof of the equivalence would

require only showing that the symmetry coefficients coincide.

another more simple way exists how to proof the equivalence of stochas-
tic problem with a quantum field model
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Janssen, H. K. (1976) Z. Phys. B 23, 377
De Dominicis, C. and Peliti, L. (1978) Phys. Rev. B 18, 353
Adzhemyan, L. Ts., Vasilev, A. N., and Pismak, Yu. M. (1983) Teor.
Math. Phys. 57, 1131
solution of the Navier Stokes equation (??)

Solution of eq. (1): ϕ̃ ≡ ϕ̃(x; f )
Generating functional G(A) for correlation functions of the field ϕ

G(Ã) =

∫
Df exp

[
−fD−1f/2 + Ãϕ̃

]∫
Df exp [−fD−1f/2]

, (14)

Ã(x) – a source Useful identity:

exp(Ãϕ̃) =

∫
Dϕδ(ϕ− ϕ̃) exp(Ãϕ) (15)

Functional δ-function

δ(ϕ− ϕ̃) ≡
∏

x

δ [ϕ(x)− ϕ̃(x)] (16)
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ϕ̃ – unique solution of the equation (1) ⇒
ϕ = ϕ̃ ⇔ Q(ϕ, f ) ≡ −∂tϕ + U(ϕ) + f = 0 (17)

δ(ϕ− ϕ̃) = δ [Q(ϕ, f )] det M , M =
δQ

δϕ
(18)

M(x, x′) = δQ(x)/δϕ(x′)
Integral representation of δ-function:

δ [Q(ϕ, f )] =

∫
Dϕ′ exp [ϕ′ Q(ϕ, f )]. (19)

ϕ′ - auxiliary field

G(Ã) =

∫ ∫
DϕDϕ′ det M exp

[
ϕ′Dϕ′/2 + ϕ′ (−∂tϕ + U(ϕ)) + Ãϕ

]
.

(20)

Contribution of the determinant det M ≡ det
[

δQ
δϕ

]
:

M = M0 + M1, M0 = −∂t + L = −∆−1
12 , M1 ≡

δn(ϕ)

δϕ
, (21)
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det M = det M0 det [1−∆12M1] .

An infinite series

ln det [1−∆12M1] = −tr [∆12M1 + ∆12M1∆12M1 + · · · ] . (22)

A diagrammatic representation: closed loops

ln det(1−M) = tr ln(1−M) =

= −tr
[
M + M 2/2 + M 3/3 + · · ·

]
, (23)

Retardation condition ⇒ step function θ(t) ⇒ all closed multi-loops
vanish
The first one-loop term remains∫ ∫

dxdx′ ∆12(x, x′)M1(x
′, x) (24)

t-locality of the functional U ⇒ kernel M1(x
′, x) = δ(t′ − t)M̃1(x

′, x)
Closed single-line loop contains the equal-time function (propagator)
∆12(x, x′), (t = t′) - not defined

(∂t − L)∆12(x, x′) = δ(x− x′) (25)
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∆12(x, x′) = θ(t− t′)R(x, x′) , (26)

R(x, x′)|t=t′ = δ(x− x′) , (27)

(∂t − L)R(x, x′) = 0 . (28)

∆12(x, x′)|t=t′+0 = δ(x− x′), ∆12(x, x′)|t=t′−0 = 0 (29)

Various definitions of the propagator ∆12(x, x′)|t=t′

Usually ∆12(x, x′)|t=t′ = 1/2
Reasonable to put ∆12(x, x′)|t=t′ = 0
det M – an irrelevant constant

Statement:

An arbitrary stochastic problem (1) is equivalent to the field theoretic
model with double number of fields ϕ ≡ ϕ, ϕ′ and with the action
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functional

S(ϕ) =

∫ ∫
dxdx′ϕ′(x)D(x, x′)ϕ′(x′)/2+

∫
dxϕ′(x) [−∂tϕ(x) + U (ϕ(x))]

Language of the field-theoretic model:
Green functions – functional ”averages” over the fields ϕ with weight
exp S (S
Generating functional:

G(A) =

∫
Dϕ exp [S(ϕ) + Aϕ] , Aϕ ≡

∫
dx

[
Ã(x)ϕ(x) + A′(x)ϕ′(x)

]
(30)

Response function 〈ϕϕ′〉 –

〈ϕ(x)ϕ′(x′)〉 =
δ2G(A)

δÃ(x)δA′(x′)
|A=0 =

∫
Dϕ ϕ(x)ϕ′(x′)eS(ϕ)

Dϕ ≡ DϕDϕ′. Source A′ – regular (non-random) force added to the
equation

These full Green functions (also connected and IP-irreducible) are the
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same as their partners defined by (2) in the framework of the original
stochastic problem!!!

Action

S(ϕ) =

∫ ∫
dxdx′ ϕ′(x)D(x, x′)ϕ′(x′)/2 +

+

∫
dx ϕ′(x) [−∂tϕ(x) + Lϕ(x) + n (ϕ(x))] (31)

S0(ϕ, ϕ′) – quadratic in fields part, Sint = ϕ′n(ϕ) – interaction part
Symmetric form of S0

S0(ϕ, ϕ′) = −1

2
ϕKϕ ≡

≡ −1

2

(
ϕ
ϕ′

) (
0 (∂t − L)T

∂t − L −D

) (
ϕ
ϕ′

)
, (32)

KT (x, x′) = K(x′, x)
Inverse matrix ∆ = K−1 – a set of propagators

∆12 = ∆T
21 = (∂t − L)−1, ∆11 = ∆12D∆21, ∆22 = 0,
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∆ik(x, x′) = 〈ϕi(x), ϕk(x
′)〉0 , (33)

ϕ1 ≡ ϕ, ϕ2 ≡ ϕ′

Propagator ∆12 – retarded ⇒ ∆21 = ∆T
12 – advanced

Symmetric propagator ∆11 = ∆T
11 contains both (retarded and ad-

vanced) contributions. Interaction part: vertices with one field ϕ′ and
two or more fields ϕ (dictated by the concrete form of the nonlinear
terms)

Standard Feynman graphs of Green functions with lines (propagators)
defined by S0 and vertices defined by V (ϕ) by means of the Wick the-
orem:

G(A) = e
1
2

δ
δϕ∆ δ

δϕeV (ϕ)+Aϕ|ϕ=0, (34)

∆ – the matrix of propagators

δ/δϕi∆ikδ/δϕk ≡
∫

dxdx′δ/δϕi(x)∆ik(x, x′)δ/δϕk(x
′)

–a universal differential operation
Expanding both exponents in (34) ⇒ all Green functions as infinite se-
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ries of Feynman graphs.



21/36

IEP SAS
P J Safarik
Univesity
Kosice

Slovakia

workshop
2008

N S Bose
National
Centre

for
Basic

Sciences
Kolkata

JJ
II
J
I

Back

Close

Let us demonstrate how these general rules work in the theory of
developed turbulence. According to the aforementioned MSR mecha-
nism the stochastic model described by Eq. (??)-(??) is equivalent to
the field-theoretic model with action (31), which in this case is of the
following form:

S(ϕ, ϕ′) =

∫ ∫
dxdx′

g0ν
3
0

2
ϕ′

i(x)D̃ij(x, x′)ϕ′
j(x

′) +

+

∫
dx ϕ′(x) · [−∂tϕ(x) + ν0∆ϕ(x)− (ϕ(x) ·∇)ϕ(x)]

where the auxiliary vector field ϕ′ is solenoidal (∇ϕ′ = 0) like the veloc-
ity field ϕ, and ν0 is bare (molecular) viscosity coefficient. To distinguish
it from the renormalized (turbulent) viscosity ν, which appears in the
process of the renormalization procedure (see below) we mark it and
other analogous parameters (e.g. the coupling constant g0 in (??)) by
the subscript “zero”. The noise Dij (see Eq. (??)) we rewrote in form
g0ν

3
0D̃ij which is more convenient for further analysis. In case of an

incompressible fluid the contribution of pressure into the action (35)
vanishes due to the condition (∇ϕ′ = 0). By means of the general
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operation (34) one obtains Feynman rules for the propagators (lines) ∆
and vertices V :

=< ϕiϕj >0≡ ∆ϕϕ
ij

=< ϕiϕ
,
j >0≡ ∆ϕϕ,

ij

=< v,
iv

,
j >≡ ∆ϕ,ϕ,

ij = 0 ,

@
@@
�

��i
j

s
≡ Vijs.

The explicit form of propagators can be obtained from the quadratic
part of action (35) and in the frequency-wave-vector and time-wave-
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vector representation have the form:

∆ϕϕ
ij (k, ωk) =

PijD(k)

(iωk + ν0k2)(−iωk + ν0k2)
,

∆ϕϕ
ij (k, t′ − t) =

PijD(k)

2ν0k2
e−ν0k

2|t′−t| ,

∆ϕϕ,

ij (k, ωk) =
Pij

(−iωk + ν0k2)
,

∆ϕϕ′

ij (k, t′ − t) = θ (t′ − t) e−ν0k
2(t′−t)Pij (35)

where Pij = δij − kikj/k
2 is transverse projector due to incompressibil-

ity. Here the step function θ reflects an important physical feature of
propagator ∆ϕϕ′

namely, its retardation, because actually it is the lowest
order approximation of the response function 〈ϕϕ′〉 of the original model
(??)–(??). The propagator ∆ϕϕ represents the leading approximation
of the pair correlation function of the velocity field W2ij = 〈ϕi ϕj〉,
which in the wave-vector representation is proportional to the kinetic
energy spectrum E(k). As it is well known E(k) plays very important
role in the equation of energy balance, which describes the cascade of
the kinetic energy from the largest scales to the smallest ones, where it
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dissipates.

The vertex V is given by the non-linear part of (35) and in the frequency-
wave-vector representation has the form:

V k
ijs = i(kjδis + ksδij), (36)

where k denotes the wave-vector transferred by field ϕ′
i. At the end of

this section as illustration we present the diagrammatic representation
of the pair correlation function W2 = 〈ϕ ϕ〉 in the one loop approxima-
tion (first order in coupling constant g0):

Pair correlation function of velocity field with one-loop precision

+ + +
1

2
+ . . .
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Ward identities
The Ward identities are various relations following from an exact or

approximate symmetry of the action. The simplest is the statement that
the Green functions are invariant, and it is conveniently stated in the
language of the corresponding generating functionals. In the theory of
stochastic turbulence we use it to derive the relations between Green
functions and composite operators, which allow us to make conclusions
about their renormalization.

Useful information about the renormalization of composite operators
can also be obtained using the Ward identities for Galilean transforma-
tions of fields φ ≡ ϕ′, varphi, φ → φv:

ϕv(x) = ϕ(xv)− v(t), ϕ′
v(x) = ϕ′(xv) (37)

x ≡ x, t; xv ≡ x+u(t), t; u(t) =

∫ t

−∞
dt′v(t′) =

∫ ∞

−∞
dt′θ(t− t′)v(t′),

(38)
where v(t) is parameter of transformation. It is arbitrary velocity (vector
function) depending only on time and falls well-enough as |t| → ∞.

transformation for action:
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S(φv) = S(φ) + ϕ′∂tv (39)

Galilean invariance for turbulence reads:

G(A) = G(Av) ⇒ δvG(A) = 0

functional integral measure is invariant: Dφ = Dφv∫
Dφδve

S(φv)+Aφv+aFv = 0 (40)∫
Dφ [φ′∂tv + A∂φ + a∂F ] eS(φ)+Aφ+aF = 0 (41)

∂vφ(x) = u∂ϕ(x)− v, ∂vφ
′(x) = u∂ϕ′(x), (42)

∂v∂tφ(x) = u∂∂tϕ(x) + v∂ϕ(x)− ∂tv, ∂ ≡ ∇ ≡ ∂

∂x
(43)

a = 0 ⇒ Ward identities for Green fuctions

terms linear in a ⇒ Ward identities for composite operators
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Ward identities for Green functions

〈〈φ′∂tv + A∂φ〉〉 = 0 (44)

(38) ⇒

∫
dt

∫
dxv(t)

〈〈
−∂tφ

′(x) +

∫ t

−∞
A(x, t′)

∂φ(x, t′)

∂x
− Aϕ(x)

〉〉
= 0

(45)
v is arbitrary ⇒

∫
dx

〈〈
−∂tφ

′(x) +

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂φ(x, t′)

∂x
− Aϕ(x)

〉〉
= 0

φ in 〈〈 〉〉 ⇔ δ

δA∫
dx

〈〈
−∂t

δ

δAϕ′(x)
+

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂

∂x

δ

δA(x, t′)
− Aϕ(x)

〉〉
= 0
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G = eW

∫
dx

[
−∂t

δW

δAϕ′(x)
+

∫ ∞

−∞
θ(t− t′)A(x, t′)

∂

∂x

δW

δA(x, t′)
− Aϕ(x)

]
= 0

(46)
in term of generating functional of one-particle irreducible functions:

Γ(α) = W (A)− αA, α(x) =
δW (A)

δA(x)
, A(x) = −δΓ(α)

δα(x)

∫
dx

[
−∂tαϕ′(x) +

∫ ∞

−∞
θ(t− t′)

δΓ(α)

δα(x, t′)

∂α(x, t′)

∂x
− δΓ(α)

δαϕ(x)

]
= 0

(47)

Γ(α) = αϕ′Γϕ′ϕαϕ +
1

2
αϕ′Γϕ′ϕϕα

2
ϕ + . . . (48)

αϕ′Γϕ′ϕϕα
2
ϕ ≡

∫ ∫ ∫
dx1dx2dx3αϕ′

i
(x1)Γϕ′

iϕsϕl
(x1, x2, x3)αϕs

(x2)αϕl
(x3)
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Γϕ′
iϕs

(x1, x2) ≡ Γis(x1, x2)Γϕ′
iϕsϕl

(x1, x2, x3) ≡ Γisl(x1, x2, x3)

Substitution this expansion to the (47) gives

∫
dx Γisl(x1, x2, x)+

[
θ(t− t1)

∂

∂x1l

+ θ(t− t2)
∂

∂x2s

]
Γis(x1, x2) = 0

(49)
integration over t: important!!! due to translation invariance of Γis(x1, x2)

∂
∂x2

= − ∂
∂x1

and from it we obtain in (49)

θ(t− t1)− θ(t− t2) ⇒
after integration (49) over t we obtain final expression in time-coordinate
reprezentation∫

dx Γisl(x1, x2, x) + (t2 − t1)
∂Γis(x1, x2)

∂x1l

= 0 (50)

Ward identity in wave number - frequency representation p ≡ k, ω:
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Γis(x1, x2) =
1

(2π)2+d

∫
dp Γis(p)eip(x1−x2)

Γisl(x1, x2, x3) =

1

(2π)3(2+d)

∫ ∫ ∫
dp1dp2dp3δ(p1+p2+p3)Γisl(p1, p2, p3)e

i(p1x1+p2x2+p3x3)

∫
dx Γisl(x1, x2, x) =

1

(2π)(2+d)

∫
dp Γisl(p, p, 0)eip(x1−x2)

Finally

Γisl(p, p, 0) = kl

∂

∂ω
Γis(p) (51)

Graphic representation:
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i

p

l

s

p = 0

p
v′

v

v

= kl

∂

∂ω i
p

s
p

v′ v
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Conservation laws of energy – momentum in stochastic hydrodynam-
ics

Conservation laws of energy – momentum: important role to understand
the processes of redistribution and transfer of energy end momenta in
turbulent flow
Stochastic hydrodynamics: energy, momentum, their flows – random
quantities constructed on velocity and its derivatives
In field theory: composite operators
Swinger equations ⇒ Conservation laws∫

Dφ
δ

δφ
eS(φ)+Aφ = 0, φ ≡ ϕ′, ϕ (52)

⇒ Composite operator (random quantity) inside of brackets equals to
zero

δS(φ)

δφ
+ A(x) = 0 (53)
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First Swinger equation in field model of stochastic hydrodynamics:∫
Dφ

δ

δϕ′
i(x)

eS(φ)+Aφ = 0 (54)

Aϕ′

i + Disϕ
′
s − ∂tϕi + ν0∆ϕi + (ϕ∂)ϕi − ∂ip = 0 (55)

non-local composite operator (pressure):

p = −∂l∂s

∆
(ϕlϕs) (56)

Second Swinger equation in field model of stochastic hydrodynamics:∫
Dφ

δ

δϕ′
i(x)

ϕi(x)eS(φ)+Aφ = 0 (57)

ϕAϕ′
+ ϕDϕ′ − ϕ∂tϕ + ϕν0∆ϕ + ϕ(ϕ∂)ϕ− (ϕ∂)p = 0 (58)
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These relations – equations of composite operators: conservation laws
of energy and momentum

∂tϕi + ∂kΠik = Dikϕ
′
k + Aϕ′

i (59)

∂tE + ∂iSi = ε + ϕDϕ′ + ϕAϕ′
(60)

conservation laws for densities of conserved quatities (per unit mass,
ρ = 0):
ϕi – momentum density, E = ϕ2/2 – energy density

tensor of momentum flow density:

Πik = pδik + ϕiϕk − ν0(∂iϕk + ∂kϕi) (61)

vector of energy flow density:

Si = pϕi − ν0ϕk(∂iϕk + ∂kϕi) +
1

2
ϕiϕ

2 (62)

energy dissipation rate: tensor of momentum flow density:

ε =
1

2
ν0(∂iϕk + ∂kϕi)

2 (63)
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Averaging equations over φ with weight expS(φ) ⇒ energy momentum
balance equations
energy balance equation at vanishing external non-random forcing Aϕ′

:

∂t 〈E〉 + ∂i 〈Si〉 = −〈ε〉 + 〈ϕDϕ′〉 (64)

homogeneous an isotropic theory at vanishing external forcing ⇒ mean
value 〈F (x)〉 of arbitrary composite operator F (x) independent of x
i.e. constant ⇒ all its derivatives vanish:

0 = −ε̄ +

∫ ∫
x′dt′ 〈ϕi(x)ϕ′

s(x
′)〉Dis(x, x′), ε̄ = 〈ε〉 (65)

Dij(x, x′) =
δ(t− t′)

(2π)d

∫
dk D(k)Pij(k)eik(x−x′) ≡ δ(t− t′)dis(x, x′)

(66)

ε̄ =

∫
x′ 〈ϕi(x)ϕ′

s(x
′)〉 |t=t′ dis(x, x′) (67)

〈ϕi(x)ϕ′
s(x

′)〉 |t=t′ =
1

2
δ(x− x′)Pis (68)
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Stationary homogeneous isotropic developed turbulence

pair correlator of random force f is expressed via the energy dissipa-
tion rate (= pumping power ):

ε̄ =
1

2
tr d(x, x) (69)

or

ε̄ =
d− 1

2(2π)d

∫
dk d(k), Pii(k) = trP (k) = d− 1, k ≡ k (70)


